2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题含解析_第1页
2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题含解析_第2页
2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题含解析_第3页
2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题含解析_第4页
2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届柳州市柳江中学数学高二第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.2.已知集合,,则()A. B. C. D.3.复数(为虚数单位)的虚部是().A. B. C. D.4.函数图象交点的横坐标所在区间是()A.(1,2) B.(2,3) C.(3,4) D.(1,5)5.若身高和体重的回归模型为,则下列叙述正确的是()A.身高与体重是负相关 B.回归直线必定经过一个样本点C.身高的人体重一定时 D.身高与体重是正相关6.已知扇形的圆心角为,弧长为,则扇形的半径为()A.7 B.6 C.5 D.47.已知随机变量服从正态分布,若,则等于()A.B.C.D.8.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有()种.A.36 B.30 C.12 D.69.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.10.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.11.函数的单调递减区间为()A. B. C. D.12.设是虚数单位,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正方体的棱长为2,是的中点,则到平面的距离______.14.已知圆:的两焦点为,,点满足,则的取值范围为______.15.椭圆(为参数)的焦距为________.16.若,,满足约束条件,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)若为定义域上的单调函数,求实数的取值范围;(2)若,当时,证明:.18.(12分)每年暑期都会有大量中学生参加名校游学,夏令营等活动,某中学学生社团将其今年的社会实践主题定为“中学生暑期游学支出分析”,并在该市各个中学随机抽取了共名中学生进行问卷调查,根据问卷调查发现共名中学生参与了各类游学、夏令营等活动,从中统计得到中学生暑期游学支出(单位:百元)频率分布方图如图.(I)求实数的值;(Ⅱ)在,,三组中利用分层抽样抽取人,并从抽取的人中随机选出人,对其消费情况进行进一步分析.(i)求每组恰好各被选出人的概率;(ii)设为选出的人中这一组的人数,求随机变量的分布列和数学期望.19.(12分)函数f(x)对任意的m,,都有,并且时,恒有(1)求证:f(x)在R上是增函数(2)若,解不等式20.(12分)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:支付方式微信支付宝购物卡现金人数200150150100现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付人数的概率;(2)记X为三人中使用支付宝支付的人数,求X的分布列及数学期望.21.(12分)已知时,函数,对任意实数都有,且,当时,(1)判断的奇偶性;(2)判断在上的单调性,并给出证明;(3)若且,求的取值范围.22.(10分)已知.(1)证明:;(2)若,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.2、B【解题分析】

先求出集合A,B,由此能求出A∩B.【题目详解】因为所以.故选:B【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3、A【解题分析】

利用复数的除法法则将复数表示为一般形式,可得出复数的虚部.【题目详解】,因此,该复数的虚部为,故选A.【题目点拨】本题考查复数的除法,考查复数的虚部,对于复数问题的求解,一般利用复数的四则运算法则将复数表示为一般形式,明确复数的实部与虚部进行求解,考查计算能力,属于基础题.4、C【解题分析】

试题分析:设的零点在区间与图象交点的横坐标所在区间是,故选C.考点:曲线的交点.【方法点晴】本题考曲线的交点,涉及数形结合思想、函数与方程思想和转化化归思想,以及逻辑思维能力、等价转化能力、运算求解能力、综合程度高,属于较难题型.5、D【解题分析】

由线性回归直线方程可得回归系数大于0,所以正相关,且经过样本中心,且为估计值,即可得到结论.【题目详解】可得,可得身高与体重是正相关,错误,正确;回归直可以不经过每一个样本点,一定过样本中心点,,故错误;若,可得,即体重可能是,故错误.故选.【题目点拨】本题考查线性回归中心方程和运用,考查方程思想和估计思想,属于基础题.6、B【解题分析】

求得圆心角的弧度数,用求得扇形半径.【题目详解】依题意为,所以.故选B.【题目点拨】本小题主要考查角度制和弧度制转化,考查扇形的弧长公式的运用,属于基础题.7、B【解题分析】根据正态分布密度曲线的对称性可知,若,函数的对称轴是,所以,故选B.8、A【解题分析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有种.本题选择A选项.9、A【解题分析】

由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案.【题目详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为,故选A.【题目点拨】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10、B【解题分析】

在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【题目详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【题目点拨】本题考查了双曲线的离心率,属于常考题型.11、D【解题分析】

先求出函数的定义域,确定内层函数的单调性,再根据复合函数的单调性得出答案.【题目详解】由题可得,即,所以函数的定义域为,又函数在上单调递减,根据复合函数的单调性可知函数的单调递减区间为,故选D.【题目点拨】本题考查对数函数的单调性和应用、复合函数的单调性、二次函数的性质,体现了转化的数学思想,属于中档题.12、B【解题分析】

利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【题目详解】解:设,可得:,则,,可得:,可得:,故选:B.【题目点拨】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用线面平行,将点到平面的距离,转化为到平面的距离来求解.【题目详解】由于,所以平面,因此到平面的距离等于到平面的距离.连接,交点为,由于,所以平面,所以为所求点到面的距离,由正方形的性质可知.故答案为:【题目点拨】本小题主要考查空间点到面的距离,考查线面平行的判定,考查空间想象能力,属于基础题.14、【解题分析】

点满足则点在椭圆内,且不包含原点.故根据椭圆定义再分析即可.【题目详解】由题有点在椭圆内,且不包含原点.故,又当在线段上(不包含原点)时取得最小值2.故.故答案为:【题目点拨】本题主要考查了椭圆的定义及其性质,属于基础题型.15、1【解题分析】

根据题意,将椭圆的参数方程变形为普通方程,据此可得a、b的值,计算可得c的值,由椭圆的几何性质分析可得答案.【题目详解】解:根据题意,椭圆的参数方程为(θ为参数),则其标准方程为y1=1,其中a,b=1,则c1,则椭圆的焦距1c=1;故答案为:1.【题目点拨】本题考查椭圆的参数方程,椭圆简单的几何性质,关键是将椭圆的参数方程变形为普通方程.16、【解题分析】

画出满足条件的平面区域,结合的几何意义以及点到直线的距离求出的最小值即可.【题目详解】画出,,满足约束条件,的平面区域,如图所示:而的几何意义表示平面区域内的点到点的距离,显然到直线的距离是最小值,由,得最小值是,故答案为.【题目点拨】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】

(1)求得的导数,,得到方程的判别式,分和、三种讨论,求得函数的单调性,即可求解;(2)由,当时,只需,故只需证明当时,,求得函数的单调性与最值,即可求解.【题目详解】(1)由题意,函数的定义域为,则,方程的判别式.(ⅰ)若,即,在的定义域内,故单调递增.(ⅱ)若,则或.若,则,.当时,,当时,,所以单调递增.若,单调递增.(ⅲ)若,即或,则有两个不同的实根,当时,,从而在的定义域内没有零点,故单调递增.当时,,在的定义域内有两个不同的零点,即在定义域上不单调.综上:实数的取值范围为.(2)因为,当,时,,故只需证明当时,.当时,函数在上单调递增,又,故在上有唯一实根,且,当时,,当时,,从而当时,)取得最小值.由得,即,故,所以.综上,当时,.【题目点拨】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.18、(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见解析【解题分析】

(1)利用频率分布直方图中,各个小矩形面积和等于1,求出;(2)由频率分布直方图得三组中人数的比例为,所以抽取的10人,在每组中各占4人、3人、3人;随机变量的所有可能取值为.【题目详解】解(Ⅰ)由题意,得,解得.(Ⅱ)按照分层抽样,,,三组抽取人数分别为,,.(ⅰ)每组恰好各被选出人的概率为.(ⅱ)的所有可能取值为0,1,2,3.,,,,则的分布列为【题目点拨】统计与概率试题,往往是先考统计,后考概率,要求从图表中提取有用信息,并对数据进行处理,为解决概率问题铺垫.19、(1)证明见解析(2)不等式的解集为:.【解题分析】

(1)利用=和增函数的定义证明;(2)先通过赋值法得到,再根据(1)的增函数可解得不等式的解集.【题目详解】(1)证明:任取,则==,因为,所以,因为时,恒有,所以,所以,所以,所以,根据增函数的定义可知,f(x)在R上是增函数.(2)在中,令得,即,在中,令得,即,所以,又,所以,所以,所以等价于,因为函数在上是增函数,所以,即,所以,所以,所以不等式的解集为:.【题目点拨】本题考查了用定义证明增函数,利用增函数的性质解不等式,属于中档题.20、(1)55108【解题分析】

(1)根据表格,得出顾客使用微信、支付宝、购物卡和现金支付的概率,之后应用互斥事件有一个发生的概率和独立事件同时发生的概率公式求得结果;(2)利用二项分布求得结果.【题目详解】(1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为13设Y为三人中使用微信支付的人数,Z为使用现金支付的人数,事件A为“三人中使用微信支付的人数多于现金支付人数”,则P(A)=P(Y=3)+P(Y=2)+P(Y=1且Z=0)=(=127(2)由题意可知X~X0123P272791E(X)=3×【题目点拨】该题考查的是有关概率的问题,涉及到的知识点有独立事件同时发生的概率公式,互斥事件有一个发生的概率公式,独立重复试验,二项分布的分布列和期望,属于简单题目.21、(1)偶函数.(2)见解析.(3).【解题分析】

(1)利用赋值法得到,即得函数的奇偶性.(2)利用函数单调性的定义严格证明.(3)先求出,再解不等式.【题目详解】(1)令,则,,为偶函数.(2)设,,∵时,,∴,∴,故在上是增函数.(3)∵,又∴∵,∴,即,又故.【题目点拨】(1)本题主要考查抽象函数的单调性、奇偶性的证明,考查函数的图像和性质的运用,意在考查学生对这些知识的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论