版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市闵行区闵行中学2024届数学高二下期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列结论中正确的是()A.导数为零的点一定是极值点B.如果在附近的左侧,右端,那么是极大值C.如果在附近的左侧,右端,那么是极小值D.如果在附近的左侧,右端,那么是极大值2.某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀.统计成绩后,得到如下的列联表.根据列联表的数据判断有多少的把握认为“成绩与班级有关系”()优秀非优秀合计甲班乙班合计临界值表:参考公式:.A. B. C. D.3.已知向量,满足,,则向量在向量方向上的投影为()A.0 B.1C.2 D.4.已知为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知函数,若且对任意的恒成立,则的最大值是()A.2 B.3 C.4 D.56.函数f(x)=x3+ax2A.-3或3 B.3或-9 C.3 D.-37.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上8.曲线在点处的切线斜率为()A. B. C. D.9.若当时,函数取得最大值,则()A. B. C. D.10.在极坐标系中,点关于极点的对称点为A. B. C. D.11.已知,则()A. B. C. D.12.展开式的系数是()A.-5 B.10 C.-5 D.-10二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,角A,B,C所对的边分别为a,b,c,且14.若复数z=(a+i)2是纯虚数(i是虚数单位),a为实数,则复数z的模为15.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_____.16.当时,等式恒成立,根据该结论,当时,,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点为坐标原点,椭圆:的右顶点为,上顶点为,过点且斜率为的直线与直线相交于点,且.(1)求椭圆的离心率;(2)是圆:的一条直径,若椭圆经过,两点,求椭圆的方程.18.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.19.(12分)已经函数.(1)讨论函数的单调区间;(2)若函数在处取得极值,对恒成立,求实数的取值范围.20.(12分)一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;(2)求的分布列及期望.21.(12分)在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,曲线,极坐标方程分别为,.(Ⅰ)和交点的极坐标;(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于,两点,求.22.(10分)设,函数.(1)若,求曲线在处的切线方程;(2)求函数单调区间(3)若有两个零点,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据极值点的判断方法进行判断.【题目详解】若,则,,但是上的增函数,故不是函数的极值点.因为在的左侧附近,有,在的右侧附近,有,故的左侧附近,有为增函数,在的右侧附近,有为减函数,故是极大值.故选B.【题目点拨】函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低(高)”的特性,用数学语言描述则是:“在的附近的任意,有()”.另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点,具体如下.(1)在的左侧附近,有,在的右侧附近,有,则为函数的极大值点;(1)在的左侧附近,有,在的右侧附近,有,则为函数的极小值点;2、C【解题分析】
计算出的观测值,利用临界值表找出犯错误的概率,可得出“成绩与班级有关系”的把握性.【题目详解】由表格中的数据可得,所以,,因此,有的把握认为“成绩与班级有关系”,故选C.【题目点拨】本题考查独立性检验的基本思想,解题的关键就是计算出的观测值,并利用临界值表找出犯错误的概率,考查计算能力,属于基础题.3、D【解题分析】试题分析:在方向上的投影为,故选D.考点:向量的投影.4、A【解题分析】
根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【题目详解】①当时,满足,但不成立,即必要性不成立,②若,则,即,即故,成立,即充分性成立,综上所述,“”是“”的充分不必要条件.故选:A.【题目点拨】本题主要考查了判断必要不充分条件,解题关键是掌握判断充分条件和必要条件的方法,考查了分析能力和计算能力,属于基础题.5、B【解题分析】分析:问题转化为对任意恒成立,求正整数的值.设函数,求其导函数,得到其导函数的零点位于内,且知此零点为函数的最小值点,经求解知,从而得到0,则正整数的最大值可求..详解:因为,所以对任意恒成立,
即问题转化为对任意恒成立.
令,则令,则,
所以函数在上单调递增.
因为
所以方程在上存在唯一实根,且满足.
当时,,
即,当时,,即,
所以函数在上单调递减,
在上单调递增.
所以所以
因为),
故整数的最大值是3,
故选:B.点睛:本题考查了利用导数研究函数的单调区间,考查了数学转化思想,解答此题的关键是,如何求解函数的最小值,属难题.6、C【解题分析】
题意说明f'(1)=0,f(1)=7,由此可求得a,b【题目详解】f'(x)=3x∴f(1)=1+a+b+a2+a=7f'(1)=3+2a+b=0,解得a=3,b=-9时,f'(x)=3x2+6x-9=3(x-1)(x+3),当-3<x<1时,f'(x)<0,当x>1时,f'(x)>0a=-3,b=3时,f'(x)=3x2-6x+3=3∴a=3.故选C.【题目点拨】本题考查导数与极值,对于可导函数f(x),f'(x0)=0是x0为极值的必要条件,但不是充分条件,因此由7、B【解题分析】
设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置.【题目详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选:B.【题目点拨】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力.8、C【解题分析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.
故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.9、B【解题分析】
函数解析式提取5变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的性质可得结果.【题目详解】,其中,当,即时,取得最大值5,,则,故选B.【题目点拨】此题考查了两角和与差的正弦函数公式、辅助角公式的应用,以及正弦函数最值,熟练掌握公式是解本题的关键.10、C【解题分析】分析:在极坐标系中,关于极点的对称点为详解:∵关于极点的对称点为,
∴关于极点的对称点为.
故选:C.点睛:本题考查一个点关于极点的对称点的求法,是基础题,解题时要认真审题,注意极坐标性质的合理运用.11、C【解题分析】
利用指数函数、对数函数的单调性,将a,b,c分别与1和0比较,得到结论.【题目详解】因为所以故选:C【题目点拨】本题主要考查指数函数、对数函数的单调性的应用,还考查了转化化归的思想和理解辨析的能力,属于基础题.12、D【解题分析】
由题意利用二项展开式的通项公式,求出(1﹣x)5展开式x3的系数.【题目详解】解:根据(1﹣x)5展开式的通项公式为Tr+1=•(﹣x)r,令r=3,可得x3的系数是﹣=﹣10,故选:A.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、π【解题分析】依题意,由正弦定理得sinAcosB-sinBcosA=1214、2【解题分析】分析:先化z为代数形式,再根据纯虚数概念得a,最后根据复数模的定义求结果.详解:因为z=(a+i)2所以|z|=点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a+bi)(c+di)=(ac-bd)+(ad+bc)i,(a,b,c.d∈R).其次要熟悉复数相关基本概念,如复数a+bi(a,b∈R)的实部为a、虚部为b、模为a2+b215、甲【解题分析】试题分析:若负主要责任的是甲,则甲乙丙都在说假话,只有丁说真话,符合题意.若负主要责任的是乙,则甲丙丁都在说真话,不合题意.若负主要责任的是丙,则乙丁都在说真话,不合题意.若负主要责任的是丁,则甲乙丙丁都在说假话,不合题意.考点:逻辑推理.16、.【解题分析】
由,可得,,结合已知等式将代数式将代数式展开,可求出的值.【题目详解】当时,得,,所以,所以,,故答案为:.【题目点拨】本题考查恒等式的应用,解题时要充分利用题中的等式,结合分类讨论求解,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)运用向量的坐标运算,可得M的坐标,进而得到直线OM的斜率,进而得证;(2)由(1)知,椭圆方程设为,设PQ的方程,与椭圆联立,运用韦达定理和中点坐标公式,以及弦长公式,解方程即可得到a,b的值,进而得到椭圆方程.详解:(1)∵,,,所以.∴,解得,于是,∴椭圆的离心率为.(2)由(1)知,∴椭圆的方程为即①依题意,圆心是线段的中点,且.由对称性可知,与轴不垂直,设其直线方程为,代入①得:,设,,则,,由得,解得.于是.于是.解得:,,∴椭圆的方程为.点睛:本题考查椭圆的方程和性质,考查向量共线的坐标表示,考查直线方程和椭圆方程联立,运用韦达定理以及弦长公式,化简整理的运算能力,属于中档题.18、(1)或;(2)【解题分析】
(1)由方程有实数根则,可求出实数的取值范围.
(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【题目详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,则故.故为假命题且为真命题时,.【题目点拨】本题考查命题为真时求参数的范围和两个命题同时满足条件时,求参数的范围,属于基础题.19、(1)①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(2).【解题分析】
分析:(Ⅰ)求出导函数,由于定义域是,可按和分类讨论的正负,得单调区间.(Ⅱ)由函数在处取极值得且可得的具体数值,而不等式可转化为,这样只要求得的最小值即可.详解:(Ⅰ)在区间上,.①若,则,是区间上的减函数;②若,令得.在区间上,,函数是减函数;在区间上,,函数是增函数;综上所述,①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(II)因为函数在处取得极值,所以解得,经检验满足题意.由已知,则令,则易得在上递减,在上递增,所以,即.点睛:本题考查用导数求函数的单调区间、函数极值,用导数研究不等式恒成立问题.不等式恒成立通常通过分离参数法转化为求函数的最值.20、(1);(2).【解题分析】试题分析:(1)每位顾客采用1期付款的概率为,3位顾客采用1期付款的人数记为,则,(2)分别计算利润为200元、250元、300元的概率,再列出分布列和期望;试题解析:(1);(2)η的可能取值为200元,250元,300元.P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.η的分布列为:
200
250
300
P
0.4
0.4
0.2
E(η)=200×0.4+250×0.4+300×0.2=240(元).考点:1.二项分布;2.分布列与数学期望;21、(1)(2)见解析【解题分析】试题分析:(1)联立,极坐标方程,解出,反代得,即得和交点的极坐标;(2)先利用将极坐标方程化为直接坐标方程,再由直线参数方程几何意义得,因此将直线的参数方程代入直角坐标方程,利用韦达定理得,且,因此.试题解析:(Ⅰ)(方法一)由,极坐标方程分别为,’化为平面直角坐标系方程分为.得交点坐标为.即和交点的极坐标分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省十堰市第二中学高中地理必修一人教版导学案232气旋反气旋
- 工程现场签证管理流程
- 湖北省普通高中高三下学期高考押题预测卷化学试题-1
- 法律案例分析单选题100道及答案解析
- 安徽省县中联盟2023-2024学年高一下学期5月联考(B卷)历史试卷2
- 河北省涞水波峰中学高三下学期语文专练36
- 2《烛之武退秦师》试讲稿2023-2024学年高中语文必修下册
- 理科数学一轮复习高考帮试题第12章第1讲排列与组合(习思用数学理)
- 102分子动理论的初步知识(教师版)八年级物理下册讲义(沪粤版)
- 4S店装修工程管理协议
- 中央企业商业秘密安全保护技术指引2015版
- 熔化焊接与热切割操作规程
- EBO管理体系与案例分享
- 计算机网络自顶向下(第七版)课后答案-英文
- 临时工程经济比选方案
- 污水管道工程监理规划
- GB/T 20934-2016钢拉杆
- 临床常见问题的康复评定与处理
- Unit3 Topic2-SectionA课件- 仁爱版九年级英语上册
- 养老型年金险产品理念课件
- 江苏开放大学行政管理学2020考试复习题答案
评论
0/150
提交评论