版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶第二中学2024届高二数学第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为()A. B. C. D.2.设等差数列的公差为d,若数列为递减数列,则()A. B. C. D.3.若,;,则实数,,的大小关系为()A. B.C. D.4.二项式的展开式中的系数是()A. B. C. D.5.下列命题中,真命题是()A. B.C.的充要条件是 D.是的充分条件6.执行如图所示的程序框图,则输出的S值为()A. B.C. D.7.已知,,则A. B. C. D.8.某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有()A.种 B.种 C.种 D.种9.某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是()A. B.C. D.10.在区间上的最大值是()A. B. C. D.11.当取三个不同值时,正态曲线的图象如图所示,则下列选项中正确的是()A. B.C. D.12.已知抛物线的参数方程为,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A,B两点,则线段AB的长为A. B. C.8 D.4二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的的值为____________.14.从混有张假钞的张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则两张都是假钞的概率是_________.15.已知随机变量服从二项分布,那么方差的值为__________.16.3名医生和9名护士被分配到3所学校为学生体检,每所学校分配1名医生和3名护士,不同的分配方法共有________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数.(1)若函数在上为增函数,求实数的取值范围;(2)求证:,时,.18.(12分)如图,在直三棱柱中,,,是的中点,是的中点.(1)求异面直线与所成角的大小;(2)若直三棱柱的体积为,求四棱锥的体积.19.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.20.(12分)已知函数(为自然对数的底数).(1)讨论函数的单调性;(2)当时,恒成立,求整数的最大值.21.(12分)已知O是平面直角坐标系的原点,双曲线.(1)过双曲线的右焦点作x轴的垂线,交于A、B两点,求线段AB的长;(2)设M为的右顶点,P为右支上任意一点,已知点T的坐标为,当的最小值为时,求t的取值范围;(3)设直线与的右支交于A,B两点,若双曲线右支上存在点C使得,求实数m的值和点C的坐标.22.(10分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a,再由a,b,c的关系和离心率公式,即可得到所求.【题目详解】双曲线的渐近线方程为,直线的斜率为,由题意有,所以,,故离心率.故选:C.【题目点拨】本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题.2、C【解题分析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.3、A【解题分析】
根据指数函数与对数函数的性质,分别确定,,的范围,即可得出结果.【题目详解】因为,,,所以.故选A【题目点拨】本题主要考查对数与指数比较大小的问题,熟记对数函数与指数函数的性质即可,属于常考题型.4、B【解题分析】
利用二项展开式的通项公式,令的幂指数等于,即可求出的系数.【题目详解】由题意,二项式展开式的通项公式为,令,解得,所以的系数为.故选:B【题目点拨】本题主要考查二项展开式的通项公式,考查学生计算能力,属于基础题.5、D【解题分析】A:根据指数函数的性质可知恒成立,所以A错误.
B:当时,,所以B错误.
C:若时,满足,但不成立,所以C错误.D:则,由充分必要条件的定义,,是的充分条件,则D正确.
故选D.6、D【解题分析】
执行循环,根据判断条件确定结束循环,输出结果.【题目详解】第1步:a=7-2n=5,a>0成立,S=S+a=5,n=2;第2步:a=7-2n=3,a>0成立,S=S+a=8,n=3;第3步:a=7-2n=1,a>0成立,S=S+a=1,n=4;第4步:a=7-2n=-1,a>0不成立,退出循环,输出S=1.选D.【题目点拨】本题考查循环结构流程图,考查基本分析判断能力,属基础题.7、A【解题分析】,故选A.8、A【解题分析】分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.详解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有=141种.故选:A.点睛:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.9、C【解题分析】
先求出事件:数学不排第一节,物理不排最后一节的概率,设事件:化学排第四节,计算事件的概率,然后由公式计算即得.【题目详解】设事件:数学不排第一节,物理不排最后一节.设事件:化学排第四节.,,故满足条件的概率是.故选:C.【题目点拨】本小题主要考查条件概率计算,考查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.10、D【解题分析】
对求导,判断函数在区间上的单调性,即可求出最大值。【题目详解】所以在单调递增,在单调递减,故选D【题目点拨】本题考查利用导函数求函数的最值,属于基础题。11、A【解题分析】分析:由题意结合正态分布图象的性质可知,越小,曲线越“瘦高”,据此即可确定的大小.详解:由正态曲线的性质知,当一定时,曲线的形状由确定,越小,曲线越“瘦高”,所以.本题选择A选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.12、C【解题分析】分析:先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去,根据韦达定理求得的值,进而根据抛物线的定义可知求得答案.详解:抛物线的参数方程为,普通方程为,抛物线焦点为,且直线斜率为1,
则直线方程为,代入抛物线方程得,设根据抛物线的定义可知|,
故选:C.点睛:本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质.对学生基础知识的综合考查.关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,利用弦长公式即可求得|AB|值,从而解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
列举出算法的每一步,于此可得出该算法输出的结果.【题目详解】成立,,,,;不成立,输出的值为,故答案为.【题目点拨】本题考查算法与程序框图,要求读懂程序框图,解题时一般是列举每次循环,并写出相应的结果,考查推理能力,属于基础题.14、【解题分析】试题分析:设事件表示“抽到的两张都是假钞”,事件表示“抽到的两张至少有一张假钞”,则所求的概率即为,因为,所以,故答案为.考点:条件概率.【方法点睛】本题主要考查了条件概率的求法,考查了等可能事件的概率,体现了转化的思想,注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而不是古典概型,属于基础题.解答时,先设表示“抽到的两张都是假钞”,表示“抽到的两张至少有一张假钞”,则所求的概率即为,再根据条件概率的公式求解.15、【解题分析】分析:随机变量服从二项分布,那么,即可求得答案.详解:随机变量服从二项分布,那么,即.故答案为:.点睛:求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果X~B(n,p),则用公式E(X)=np;D(X)=np(1-p)求解,可大大减少计算量.16、10080【解题分析】
分析:首先为第一个学校安排医生和护士,再为第二个安排医生和护士,为第三个安排医生和护士,根据分步计数乘法原理可得结果.详解:为第一个学校安排医生和护士有种结果;为第二个安排医生和护士种结果;为第三个安排医生和护士种结果,根据分步计数原理可得,故答案为.点睛:本题考查组合式的应用、分步计数乘法原理的应用以及分组与分配问题,属于中档题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)利用函数在区间单调递增,则其导函数在此区间大于等于零恒成立可得;(2)由第(1)问的结论,取时构造函数,得其单调性,从而不等式左右累加可得.【题目详解】(1)解:∵,,∴,∵在上为增函数,∴在上恒成立,即在上恒成立,∵,∴,∴的取值范围是.(2)证明:由(1)知时,在上为增函数,∴令,其中,,则,则,即,即,∴……,∴累加得,∴.【题目点拨】本题关键在于构造出所需函数,得其单调性,累加可得,属于难度题。18、(1);(2);【解题分析】
(1)以为坐标原点,以,,为,,轴正方向建立空间直角坐标系,分别求出异面直线与的方向向量,代入向量夹角公式,即可求出异面直线与所成角的大小;(2)连接.由,由已知中,是的中点,面,我们根据等腰三角形“三线合一”的性质及线面垂直的性质,即可得到,,进而根据线面垂直的判定定理,得到面,故即为四棱锥的高,求出棱锥的底面面积,代入棱锥体积公式,即可得到答案.【题目详解】(1)以为坐标原点,以,,为轴正方向建立空间直角坐标系.不妨设.依题意,可得点的坐标,于是,由,则异面直线与所成角的大小为.(2)连接.由,是的中点,得;由面,面,得.又,因此面,由直三棱柱的体积为.可得.所以,四棱锥的体积为.【题目点拨】本题考查的知识点是异面直线及其所成的角,棱锥的体积,其中(1)的关键是建立空间坐标系,将异面直线夹角问题转化为向量夹角问题,而(2)的关键是根据线面垂直的判定定理,得到为棱锥的高.19、Ⅰ详见解析;Ⅱ①,②或.【解题分析】
Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【题目详解】证明:Ⅰ在图1中,,,为平行四边形,,,,当沿AD折起时,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,,0,,1,,0,,1,1,,1,,0,,设平面PBC的法向量为y,,则,取,得0,,设平面PCD的法向量b,,则,取,得1,,设二面角的大小为,可知为钝角,则,.二面角的大小为.设AM与面PBC所成角为,0,,1,,,,平面PBC的法向量0,,直线AM与平面PBC所成的角为,,解得或.【题目点拨】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.20、(1)见解析;(2)的最大值为1.【解题分析】
(1)根据的不同范围,判断导函数的符号,从而得到的单调性;(2)方法一:构造新函数,通过讨论的范围,判断单调性,从而确定结果;方法二:利用分离变量法,把问题变为,求解函数最小值得到结果.【题目详解】(1)当时,在上递增;当时,令,解得:在上递减,在上递增;当时,在上递减(2)由题意得:即对于恒成立方法一、令,则当时,在上递增,且,符合题意;当时,时,单调递增则存在,使得,且在上递减,在上递增由得:又整数的最大值为另一方面,时,,,时成立方法二、原不等式等价于:恒成立令令,则在上递增,又,存在,使得且在上递减,在上递增又,又,整数的最大值为【题目点拨】本题主要考查导数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度特种车辆安装与安全培训合同3篇
- 西安医学高等专科学校《商业影片综合案例制作》2023-2024学年第一学期期末试卷
- 二零二五版1209两人合伙经营宠物美容与寄养中心协议3篇
- 二零二五年度珠宝首饰交易居间代理协议3篇
- 新疆机电职业技术学院《影视剧美术》2023-2024学年第一学期期末试卷
- 个体经销商专属销售授权协议(2024年度)版B版
- 通化师范学院《二维动画技术》2023-2024学年第一学期期末试卷
- 2024离婚债务分割详细合同书版B版
- 二零二五版厨具设备售后服务与技术培训合同3篇
- 2024版电源租赁协议
- 银行会计主管年度工作总结2024(30篇)
- 教师招聘(教育理论基础)考试题库(含答案)
- 2024年秋季学期学校办公室工作总结
- 上海市12校2025届高三第一次模拟考试英语试卷含解析
- 三年级数学(上)计算题专项练习附答案集锦
- 长亭送别完整版本
- 《铁路轨道维护》课件-更换道岔尖轨作业
- 股份代持协议书简版wps
- 职业学校视频监控存储系统解决方案
- 《销售心理学培训》课件
- 2024年安徽省公务员录用考试《行测》真题及解析
评论
0/150
提交评论