2024届山东省滨州市数学高二下期末调研试题含解析_第1页
2024届山东省滨州市数学高二下期末调研试题含解析_第2页
2024届山东省滨州市数学高二下期末调研试题含解析_第3页
2024届山东省滨州市数学高二下期末调研试题含解析_第4页
2024届山东省滨州市数学高二下期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省滨州市数学高二下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一次数学考试后,甲说:我是第一名,乙说:我是第一名,丙说:乙是第一名。丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是()A.甲 B.乙 C.丙 D.丁2.设函数f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则()A.a< B.a<且a≠1 C.a>且a<-1 D.-1<a<3.用数学归纳法证明时,第一步应验证不等式()A. B. C. D.4.数学归纳法证明1n+1+1A.12k+2 B.12k+1 C.15.()A. B. C.0 D.6.两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是A. B. C. D.7.若某空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2 B.4π+2C.2π+ D.4π+8.已知定义在上的函数满足:函数的图象关于直线对称,且当成立(是函数的导函数),若,,,则的大小关系是()A. B. C. D.9.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.10.有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种 B.48种C.96种 D.144种11.设有两条直线,和两个平面、,则下列命题中错误的是A.若,且,则或B.若,且,,则C.若,且,,则D.若,且,则12.一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若向量与共线,则在方向上的投影为______.14.若变量,满足约束条件则的最大值为______.15.设为虚数单位,若,则________.16.设函数的图象与的图象关于直线对称,且,则实数_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,不等式的解集为.(1)求;(2)当时,证明:.18.(12分)已知函数,,(其中为自然对数的底数,…).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围;(3)若,当时,恒成立,求实数的取值范围.19.(12分)已知实数满足,其中实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集为R,求的取值范围.21.(12分)已知函数(1)求在点处的切线方程;(2)若存在,满足成立,求的取值范围.22.(10分)已知函数.(1)若不等式的解集,求实数的值.(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

通过假设法来进行判断。【题目详解】假设甲说的是真话,则第一名是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,第一名不是甲;假设乙说的是真话,则第一名是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,第一名也不是乙;假设丙说的是真话,则第一名是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,第一名也不是乙;假设丁说的是真话,则第一名不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是第一名,同时乙也说谎,说明乙也不是第一名,第一名只有一人,所以只有丙才是第一名,故假设成立,第一名是丙。本题选C。【题目点拨】本题考查了推理能力。解决此类问题的基本方法就是假设法。2、D【解题分析】

先利用函数f(x)是定义在实数集上的以3为周期的奇函数得f(2)=f(-1)=-f(1),再利用f(1)>1代入即可求a的取值范围.【题目详解】因为函数f(x)是定义在实数集上的以3为周期的奇函数,

所以f(2)=f(-1)=-f(1).

又因为f(1)>1,故f(2)<-1,即<-1⇒<0

解可得-1<a<.

故选:D.【题目点拨】本题主要考查了函数的周期性,以及函数奇偶性的性质和分式不等式的解法,属于基础题.3、B【解题分析】

根据,第一步应验证的情况,计算得到答案.【题目详解】因为,故第一步应验证的情况,即.故选:.【题目点拨】本题考查了数学归纳法,意在考查学生对于数学归纳法的理解和掌握.4、D【解题分析】

求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【题目详解】当n=k时,左边的代数式为1k+1当n=k+1时,左边的代数式为1k+2故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:12k+1【题目点拨】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,属于中档题.5、D【解题分析】

定积分的几何意义是圆的个圆的面积,计算可得结果.【题目详解】定积分的几何意义是圆的个圆的面积,∴,故选D.【题目点拨】本题考查定积分,利用定积分的几何意义是解决问题的关键,属基础题6、D【解题分析】

分别分析三个图中的点的分布情况,即可得出图是正相关关系,图不相关的,图是负相关关系.【题目详解】对于,图中的点成带状分布,且从左到右上升,是正相关关系;对于,图中的点没有明显的带状分布,是不相关的;对于,图中的点成带状分布,且从左到右是下降的,是负相关关系.故选:D.【题目点拨】本题考查了利散点图判断相关性问题,是基础题.7、C【解题分析】

试题分析:由三视图知几何体是一个简单的组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是,侧棱长,高是,下面是一个圆柱,圆柱的底面直径是,高是,所以组合体的体积是,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图及其体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中根据三视图得出上面一个四棱锥、下面是一个圆柱组成的组合体,得到几何体的数量关系是解答的关键,属于基础题.8、A【解题分析】

由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【题目详解】∵函数的图象关于直线对称,∴关于轴对称,∴函数为奇函数.因为,∴当时,,函数单调递减,当时,函数单调递减.,,,,故选A【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等9、C【解题分析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【题目点拨】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.10、C【解题分析】试题分析:,故选C.考点:排列组合.11、D【解题分析】

对A,直接进行直观想象可得命题正确;对,由线面垂直的性质可判断;对,由线面垂直的性质定理可判断;对D,也有可能.【题目详解】对A,若,且,则或,可借助长方体直接进行观察命题成立,故A正确;对B,若,且,可得,又,则由线面垂直的性质可知,故B正确;对C,若,且,可得,又,由线面垂直的性质定理可知,故C正确;对D,若,且,则也有可能,故D错误.故选:D.【题目点拨】本题考查空间中直线与直线、直线与平面、平面与平面之间的位置关系,熟练掌握空间线面之间关系的判定方法及性质定理是解答此类问题的关键.12、C【解题分析】

第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率,计算得到答案.【题目详解】第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率故答案选C【题目点拨】本题考查了条件概率,将模型简化是解题的关键,也可以用条件概率公式计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

,由向量与共线,得,解得,则在方向上的投影为,故答案为.14、9.【解题分析】分析:画出可行域,然后结合目标函数求最值即可.详解:作出如图所示可行域:可知当目标函数经过点A(2,3)时取得最大值,故最大值为9.点睛:考查简单的线性规划的最值问题,准确画出图形,画出可行域确定最优解是解题关键,属于基础题.15、【解题分析】由,得,则,故答案为.16、【解题分析】

设f(x)上任意一点为(x,y),则(x,y)关于直线y=﹣x对称的点为(﹣y,﹣x),把(﹣y,﹣x)代入,得f(x)=log3(-x)+a,由此利用f(﹣3)+f(﹣)=4,能求出a的值.【题目详解】函数y=f(x)的图象与的图象关于直线y=﹣x对称,设f(x)上任意一点为(x,y),则(x,y)关于直线y=﹣x对称的点为(﹣y,﹣x),把(﹣y,﹣x)代入,得﹣x=,∴f(x)=log3(-x)+a,∵f(﹣3)+f(﹣)=4,∴1+a﹣1+a=4,解得a=1.故答案为1.【题目点拨】本题考查指对函数的相互转化,考查对数值的运算,考查函数与方程思想,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)M=(-2,2).(Ⅱ)见解析【解题分析】试题分析:(1)将函数写成分段函数,再利用,即可求得M;(2)利用作差法,证明,即可得到结论.试题解析:(1),当时,,解得;当时,,解得;当时,恒成立;综合以上:(2)证明,只需,只需∵又∵,∴因此结果成立.考点:不等式证明;绝对值函数18、(1)极大值为-1,最小值为(2)(3)【解题分析】

(1)当时,利用函数导数,求得函数的单调区间,并求出极大值和极小值.(2)对求导后,令导数大于或等于零,对分成三类,讨论函数的单调区间,由此求得取值范围.(3)构造函数,利用导数求得函数的最小值,令这个最小值大于或等于零,解不等式来求得的取值范围.【题目详解】解:(1)当时,,,当或时,,函数在区间,上单调递增;当时,,函数在区间上单调递减.所以当时,取得极大值;当时,取得极小值.(2),令,依题意,函数在区间上单调递增,即在区间上恒成立.当时,显然成立;当时,在上单调递增,只须,即,所以.当时,在上单调递减,只须,即,所以.综上,的取值范围为.(3),即,令=,因为,所以只须,令,,,因为,所以,所以,即单调递增,又,即单调递增,所以,所以,又,所以.【题目点拨】本小题主要考查利用导数求具体函数的单调区间以及极值,考查利用导致求解参数的取值范围问题,考查利用导数求解不等式恒成立问题.综合性较强,属于难题.利用导数研究函数的性质,主要是通过导数得出函数的单调区间等性质,结合恒成立问题或者存在性问题的求解策略来解决较为复杂的问题.19、(1);(2)【解题分析】

试题分析:(Ⅰ)解不等式可得,可求得时命题中的范围,若为真则说明命题均为真,应将命题中的范围取交集.(Ⅱ)若是的充分不必要条件,则命题的取值的集合是命题的取值集合的真子集.试题解析:解:(Ⅰ):,时,,:为真,(Ⅱ)若是的充分不必要条件,则∴解得.考点:1命题;2充分必要条件.20、(1);(2)【解题分析】

(1)分段讨论去绝对值解不等式即可;(2)由绝对值三角不等式可得,从而得或,进而可得解.【题目详解】(1)当时,原不等式可化为解得所以不等式的解集为(2)由题意可得,当时取等号.或,即或【题目点拨】本题主要考查了含绝对值的不等式的求解及绝对值三角不等式求最值,属于基础题.21、(1);(2)【解题分析】

(1)求出,得出切点坐标,利用导数求出,得出切线的斜率,再利用点斜式写出切线的方程;(2)由,即,将问题转化为,然后利用导数求出函数在区间上的最大值,可求出实数的取值范围.【题目详解】(1),,在处的切线方程为:,即;(2),即,令,得.时,,时,.在上减,在上增,又时,的最大值在区间端点处取到.,,,在上最大值为,故的取值范围是:.【题目点拨】本题考查导数的几何意义,利用函数不等式能成立求参数的取值范围,在处理函数不等式成立的问题时,可利用分类讨论或者参变量分离法来求解,在利用参变量分离时要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论