




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省十校联盟选考学考高二数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的共轭复数为()A. B. C. D.2.已知函数在处取极值10,则()A.4或 B.4或 C.4 D.3.复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,直线过点,则的最小值为()A.4 B.3 C.2 D.15.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.46.若(为虚数单位),则=()A.1 B. C.2 D.47.已知函数,其中为自然对数的底数,则对任意,下列不等式一定成立的是()A. B.C. D.8.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:经计算,则下列选项正确的是A.有的把握认为使用智能手机对学习有影响B.有的把握认为使用智能手机对学习无影响C.有的把握认为使用智能手机对学习有影响D.有的把握认为使用智能手机对学习无影响9.已知函数,若方程有4个不同的实数根,则的取值范围是()A. B. C. D.10.“因为偶函数的图象关于轴对称,而函数是偶函数,所以的图象关于轴对称”.在上述演绎推理中,所以结论错误的原因是()A.大前提错误 B.小前提错误C.推理形式错误 D.大前提与推理形式都错误11.设,则“”是的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件12.已知变量,满足回归方程,其散点图如图所示,则()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,且.(1)求,,的值;(2)猜想数列的通项公式的表达式,并用数学归纳法证明你的猜想.14.若变量,满足约束条件则的最大值为______.15.复数(是虚数单位)的虚部是_________16.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)计算;(2)若在上单调递减,求实数的范围18.(12分)某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?19.(12分)已知函数,,若在处与直线相切.(1)求的值;(2)求在上的极值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程及直线的直角坐标方程;(Ⅱ)若曲线上恰好存在两个点到直线的距离为,求实数的取值范围.21.(12分)已知函数,k∈R.(I)求函数f(x)的单调区间;(II)当k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.22.(10分)如图,已知三棱柱,平面平面,,分别是的中点.(1)证明:;(2)求直线与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可知:,则复数的共轭复数为.本题选择B选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.2、C【解题分析】分析:根据函数的极值点和极值得到关于的方程组,解方程组并进行验证可得所求.详解:∵,∴.由题意得,即,解得或.当时,,故函数单调递增,无极值.不符合题意.∴.故选C.点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.3、D【解题分析】
,对应的点为,在第四象限,故选D.4、A【解题分析】
先得a+3b=1,再与相乘后,用基本不等式即可得出结果.【题目详解】依题意得,,所以,当且仅当时取等号;故选A【题目点拨】本题考查了基本不等式及其应用,熟记基本不等式即可,属于基础题.5、C【解题分析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.6、A【解题分析】
根据复数的除法运算,化简得到,再由复数模的计算公式,即可求解.【题目详解】由题意,复数满足,则,所以,故选A.【题目点拨】本题主要考查了复数的运算,以及复数模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】
,可得在上是偶函数.函数,利用导数研究函数的单调性即可得出结果.【题目详解】解:,在上是偶函数.函数,,令,则,函数在上单调递增,,函数在上单调递增.,,.故选:A.【题目点拨】本题考查利用导数研究函数的单调性、函数的奇偶性,不等式的性质,考查了推理能力与计算能力,属于中档题.8、A【解题分析】
根据附表可得,所以有的把握认为使用智能手机对学习有影响,选A9、B【解题分析】
作函数的图像,方程有4个不同的实数根,从而得到,,,的范围,代入化简,再利用函数的单调性即可得到取值范围。【题目详解】作函数的图像如下:由图可知:,,,故;由在单调递减,所以的范围是,即的取值范围是;故答案选B【题目点拨】本题考查分段函数的运用,主要考查函数单调性的运用,运用数形结合的思想方法是解题的关键。10、B【解题分析】分析:因为函数不是偶函数,是一个非奇非偶函数,所以小前提错误.详解:因为,所以,所以函数f(x)不是偶函数,所以小前提错误.故答案为:B.点睛:本题主要考查演绎推理中的三段论和函数奇偶性的判断,意在考查学生对这些知识的掌握水平.11、A【解题分析】分析:先化简两个不等式,再利用充要条件的定义来判断.详解:由得-1<x-1<1,所以0<x<2.由得x<2,因为,所以“”是的充分不必要条件.故答案为:A.点睛:(1)本题主要考查充要条件的判断和不等式的解法,意在考查学生对这些知识的掌握水平和基本计算能力.(2)本题利用集合法判断充要条件,首先分清条件和结论;然后化简每一个命题,建立命题和集合的对应关系.,;最后利用下面的结论判断:(1)若,则是的充分条件,若,则是的充分非必要条件;(2)若,则是的必要条件,若,则是的必要非充分条件;(3)若且,即时,则是的充要条件.12、D【解题分析】
由散点图知变量负相关,回归直线方程的斜率小于1;回归直线在y轴上的截距大于1.可得答案.【题目详解】由散点图可知,变量之间具有负相关关系.
回归直线的方程的斜率.
回归直线在轴上的截距是正数.
故选:D【题目点拨】本题考查了散点图与线性回归方程的应用问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(1),,(2)().证明见解析【解题分析】
(1)利用递推式直接求:(2)猜想数列{an}的通项公式为()用数学归纳法证明即可.【题目详解】解:(1)∵,且,∴,,.(2)猜想数列的通项公式为().用数学归纳法证明如下:①当时,左边,右边,因此,左边=右边.所以,当时,猜想成立.②假设(,)时,猜想成立,即,那么时,.所以,当时,猜想成立.根据①和②,可知猜想成立.【题目点拨】本题考查了数列中的归纳法思想及证明基本步骤,属于基础题.14、9.【解题分析】分析:画出可行域,然后结合目标函数求最值即可.详解:作出如图所示可行域:可知当目标函数经过点A(2,3)时取得最大值,故最大值为9.点睛:考查简单的线性规划的最值问题,准确画出图形,画出可行域确定最优解是解题关键,属于基础题.15、【解题分析】
根据复数的结果,直接判断出其虚部是多少.【题目详解】因为,所以复数的虚部为.故答案为:.【题目点拨】本题考查复数的虚部的辨别,难度容易.已知复数,则为复数的实部,为复数的虚部.16、【解题分析】
试题分析:由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,所以考点:线性规划、最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)直接求导得到答案.(2)在上恒成立,即恒成立,得到答案.【题目详解】(1),则;(2)在上恒成立,故在上恒成立,故.【题目点拨】本题考查了求导数,根据函数的单调性求参数,意在考查学生的计算能力.18、当矩形温室的左侧边长为40m,后侧边长为20m时,花卉种植面积达到最大,最大面积为648m【解题分析】解:设温室的边长分别为:x,y则:xy=800………………(1分)S=(x-4)(y-2),(x>0)………(3分)=xy-4y-2x+8=800-=808-(3200∵x>0∴3200x+2x≥23200当且仅当时,等号成立∴S≤648…………………(6分)此时x=40y=20,最大的种植面积为:648m219、(1)(2)极大值为,无极小值.【解题分析】
(1)求出导函数,利用切线意义可列得方程组,于是可得答案;(2)利用导函数判断在上的单调性,于是可求得极值.【题目详解】解:(1)∵函数在处与直线相切,∴,即,解得;(2)由(1)得:,定义域为.,令,解得,令,得.∴在上单调递增,在上单调递减,∴在上的极大值为,无极小值.【题目点拨】本题主要考查导数的几何意义,利用导函数求极值,意在考查学生的分析能力,转化能力和计算能力,比较基础.20、(Ⅰ):,:;(Ⅱ)【解题分析】
(1)利用消去参数,得到曲线的普通方程,再由,化直线为直角坐标方程;(2)与直线的距离为的点在与平行且距离为的两平行直线上,依题意只有一条平行线与圆相交,另一条平行线与圆相离,利用圆心到直线的距离与半径关系,即可求解.【题目详解】(Ⅰ)由曲线的参数方程(为参数,)消去参数,可得曲线的普通方程.,代入,得直线的直角坐标方程为.(Ⅱ)由(Ⅰ)知,直线的直角坐标方程为,曲线的直角坐标方程为,曲线表示以原点为圆心,以为半径的圆,且原点到直线的距离为.所以要使曲线上恰好存在两个点到直线的距离为,则须,即.所以实数的取值范围是.【题目点拨】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化,以及直线与圆的位置关系,属于中档题.21、(Ⅰ)见解析;(Ⅱ)【解题分析】分析:(Ⅰ)先求出函数的定义域,求导数后根据的取值通过分类讨论求单调区间即可.(Ⅱ)将问题转化为在(1,2)上恒成立可得所求.详解:(I)函数的定义域为.由题意得,(1)当时,令,解得;令,解得.(2)当时,①当,即时,令,解得或;令,解得.②当时,恒成立,函数在上为单调递增函数;③当,即时,令,解得或;令,解得.综上所述,当时,函数的单调递增区间为(0,1),单调递减区间为;当时,函数的单调递增区间为(0,1),,单调递减区间为;当时,函数的单调递增区间为;当时,函数的单调递增区间为,,单调递减区间为.(II)因为函数在(1,2)内单调递减,所以在(1,2)上恒成立.又因为,则,所以在(1,2)上恒成立,即在(1,2)上恒成立,因为,所以,又,所以.故k的取值范围为.点睛:解题时注意导函数的符号和函数单调性间的关系.特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版设计创意保密协议书
- 二零二五版售后维护保障协议
- 二零二五版房产抵押合同样板
- 双方自愿离婚协议书格式
- 代持协议合同书二零二五年
- 2025授权专卖店特许经营合同制定指南
- 2025中外合作开发合同样本(合同版本)
- 2025出国留学咨询服务合同
- 2025深圳工程装修施工合同
- 口腔科院感知识培训内容
- 2024年4月自考02378信息资源管理试题及答案
- 2024年关于加强社区工作者队伍建设的意见课件
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 《中电联团体标准-220kV变电站并联直流电源系统技术规范》
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- MOOC 创业基础-暨南大学 中国大学慕课答案
- (2024年)面神经炎课件完整版
- 南方报业传媒集团笔试题
- 城投集团招聘真题
- 选矿厂尾矿库初步设计方案
- 不良资产尽职调查工作底稿表
评论
0/150
提交评论