




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届青海西宁二十一中数学高二下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2x-3y)9A.-1 B.512 C.-512 D.12.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件为“取出的两个球颜色不同”,事件为“取出一个黄球,一个绿球”,则A. B.C. D.3.将点的极坐标化成直角坐标是(
)A. B. C. D.4.已知m∈R,若函数f(x)=1x+1-mx-m-3(-1<x⩽0)A.-94,-2 B.(-95.阅读如图所示的程序框图,则输出的S等于()A.38 B.40 C.20 D.326.若函数的图象的顶点在第一象限,则函数的图像是()A. B.C. D.7.若随机变量服从正态分布,则()附:,.A.1.3413 B.1.2718 C.1.1587 D.1.12288.设,则z的共轭复数为A. B. C. D.9.全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则不同的报名种数是()A. B. C. D.10.若曲线,在点处的切线分别为,且,则的值为()A. B.2 C. D.11.已知集合,则()A. B.C. D.12.某单位从6男4女共10名员工中,选出3男2女共5名员工,安排在周一到周五的5个夜晚值班,每名员工值一个夜班且不重复值班,其中女员工甲不能安排在星期一、星期二值班,男员工乙不能安排在星期二值班,其中男员工丙必须被选且必须安排在星期五值班,则这个单位安排夜晚值班的方案共有()A.960种 B.984种 C.1080种 D.1440种二、填空题:本题共4小题,每小题5分,共20分。13.函数的图像在处的切线方程为_______.14.已知幂函数的图象经过点,则实数α的值是_______.15.已知随机变量服从正态分布,且,则_______.16.若则的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)当时,求函数在点处的切线方程;(Ⅱ)当时,讨论函数的零点个数.18.(12分)设函数,其中.(1)当时,求函数的极值;(2)若,成立,求的取值范围.19.(12分)如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.(l)求椭圆的标准方程;(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.20.(12分)已知数列的前n项和为,满足,且,.(1)求,,的值;(2)猜想数列的通项公式,并用数学归纳法予以证明.21.(12分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?22.(10分)已知函数f(x)=xlnxx2﹣ax+1.(1)设g(x)=f′(x),求g(x)的单调区间;(2)若f(x)有两个极值点x1,x2,求证:x1+x2>2.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
(a+b)n展开式中所有项的二项系数和为【题目详解】(a+b)n展开式中所有项的二项系数和为2(2x-3y)9的展开式中各项的二项式系数之和为2故答案选B【题目点拨】本题考查了二项系数和,属于基础题型.2、D【解题分析】分析:先求取出的两个球颜色不同得概率,再求取出一个黄球,一个绿球得概率可,最后根据条件概率公式求结果.详解:因为所以,选D.点睛:本题考查条件概率计算公式,考查基本求解能力.3、A【解题分析】本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A4、B【解题分析】
通过参变分离、换元法,把函数f(x)的零点个数转化成直线y=m与抛物线的交点个数.【题目详解】∵-1<x≤0,∴0<x+1≤1,∵函数f(x)在-1<x≤0有两个不同零点⇔方程m=(1x+1)2∴m=t2-3t在t≥1有且仅有两个不同的根⇔y=m∴-【题目点拨】通过换元把复杂的分式函数转化为熟知的二次函数,但要注意换元后新元的取值范围.5、B【解题分析】
模拟程序,依次写出各步的结果,即可得到所求输出值.【题目详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【题目点拨】本题考查程序框图中的循环结构,难度较易.6、A【解题分析】
求导,根据导函数的性质解题。【题目详解】,斜率为正,排除BD选项。的图象的顶点在第一象限其对称轴大于0即b<0,选A【题目点拨】本题考查根据已知信息选导函数的大致图像。属于简单题。7、C【解题分析】
根据正态曲线的对称性,以及,可得结果.【题目详解】,故选:C【题目点拨】本题考查正态分布,重点把握正态曲线的对称性,属基础题.8、D【解题分析】试题分析:的共轭复数为,故选D.考点:1.复数的四则运算;2.共轭复数的概念.9、C【解题分析】分析:利用分布计数乘法原理解答即可.详解:全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则每位同学都可以从5科中任选一科,由乘法原理,可得不同的报名种数是故选C.点睛:本题考查分布计数乘法原理,属基础题.10、A【解题分析】试题分析:因为,则f′(1)=,g′(1)=a,又曲线a在点P(1,1)处的切线相互垂直,所以f′(1)•g′(1)=-1,即,所以a=-1.故选A.考点:利用导数研究曲线上某点切线方程.11、D【解题分析】,所以,故选B.12、A【解题分析】分五类:(1)甲乙都不选:;(2)选甲不选乙:;(3)选乙不选甲:;(4)甲乙都选:;故由加法计数原理可得,共种,应选答案A。点睛:解答本题的关键是深刻充分理解题意,灵活运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理。求解依据题设条件将问题分为四类,然后运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理求出问题的答案,使得问题获解。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对函数求导,把分别代入原函数与导数中分别求出切点坐标与切线斜率,进而求得切线方程。【题目详解】,函数的图像在处的切线方程为,即.【题目点拨】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。14、【解题分析】
由幂函数的定义,把代入可求解.【题目详解】点在幂函数的图象上,,,故答案为:【题目点拨】本题考查幂函数的定义.幂函数的性质:(1)幂函数在上都有定义;(2)幂函数的图象过定点;(3)当时,幂函数的图象都过点和,且在上单调递增;(4)当时,幂函数的图象都过点,且在上单调递减;(5)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数.15、0.01【解题分析】
根据正态分布的对称性,求得的值.【题目详解】根据正态分布的对称性有.【题目点拨】本小题主要考查正态分布的对称性,属于基础题.16、【解题分析】
由排列数和组合数展开可解得n=6.【题目详解】由排列数和组合数可知,化简得,所以n=6,经检验符合,所以填6.【题目点拨】本题考查排列数组合数方程,一般用公式展开或用排列数组合公式化简,求得n,注意n取正整数且有范围限制。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)分类讨论,详见解析.【解题分析】
(Ⅰ)由已知得,求得,,由点斜式方程可得解.(Ⅱ)由已知得,分类讨论,,,四种情况下的零点个数.【题目详解】解:(Ⅰ)∵,∴,∴,又,∴切线方程为.(Ⅱ)∵,当时,,即在上为增函数,∵,,∴在上有一个零点.当时,,∵,,∴在上有一个零点.当时,在上为增函数,上为减函数,∵,,此时在上有一个零点.当时,易知在上为增函数,上为减函数,∵,,又有,当,即时,在上有一个零,当时,在上有两个零.综上所述,当时,函数在上有一个零;当时,函数在上有两个零点.【题目点拨】本题考查了用导数求过曲线上一点的切线方程和讨论函数零点个数问题,考查了分类讨论的思想,属于难题.18、(1),(2)【解题分析】
(1)求导,分析导函数零点和正负,即得解.(2)由于,转化为:,成立,参变分离,分,,三种情况讨论,即得解.【题目详解】解:(1)当时,,或在和上单调增,在上单调减(2)设函数,,要使,都有成立,只需函数函数在上单调递增即可,于是只需,成立,当时,令,,则;当时;当,,令,关于单调递增,则,则,于是.又当时,,,所以函数在单调递减,而,则当时,,不符合题意;当时,设,当时,在单调递增,因此当时,,于是,当时,此时,不符合题意.综上所述,的取值范围是.【题目点拨】本题考查了函数与导数综合,考查了学生综合分析,分类讨论,转化划归,数学运算的能力,属于较难题.19、(1)(2)见解析【解题分析】分析:(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质,,列出关于、的方程组,求出、,即可得椭圆的标准方程;(2)可设直线的方程为,联立得,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.详解:(1)因为点到椭圆的两焦点的距离之和为,所以,解得.又椭圆经过点,所以.所以.所以椭圆的标准方程为.证明:(2)因为线段的中垂线的斜率为,所以直线的斜率为-2.所以可设直线的方程为.据得.设点,,.所以,.所以,.因为,所以.所以点在直线上.又点,也在直线上,所以三点共线.点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.20、(1),,(2)猜想,证明见解析.【解题分析】
1利用代入计算,可得结论;2猜想,然后利用归纳法进行证明,检验时等式成立,假设时命题成立,证明当时命题也成立.【题目详解】1,且,当时,,,当时,,,或舍,当时,,,或舍,,,;2由1猜想,下面用数学归纳法证明:①当时,,显然成立,②假设时,结论成立,即,则当时,由,有,,,或舍,时结论成立,由①②知当,均成立.【题目点拨】本题考查了归纳法的证明,归纳法一般三个步骤:验证成立;假设成立;利用已知条件证明也成立,从而求证,这是数列的通项一种常用求解的方法,属中档题.21、(1);(2);(3).【解题分析】
(1)利用插空法可求出排法种数;(2)利用捆绑法可求出排法种数;(3)分两种情况讨论:①若在排尾;②若不在排尾.分别求出每一种情况的排法种数,由加法原理计算可得出答案.【题目详解】(1)将、插入到其余人所形成的个空中,因此,排法种数为;(2)将、两人捆绑在一起看作一个复合元素和其他人去安排,因此,排法种数为;(3)分以下两种情况讨论:①若在排尾,则剩下的人全排列,故有种排法;②若不在排尾,则有个位置可选,有个位置可选,将剩下的人全排列,安排在其它个位置即可,此时,共有种排法.综上所述,共有种不同的排法种数.【题目点拨】本题考查了排列、组合的应用,同时也考查了插空法、捆绑法以及分类计数原理的应用,考查计算能力,属于中等题.22、(1)g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞);(2)见解析【解题分析】
(1)先得到解析式,然后对求导,分别解和,得到其单调增区间和单调减区间;(2)由题可知x1,x2是g(x)的两零点,要证x1+x2>2,只需证x2>2﹣x1>1,只需证g(2﹣x1)>g(x2)=0,设h(x)=ln(2﹣x)﹣lnx+2x﹣2,利用导数证明在(0,1)上单调递减,从而证明,即g(2﹣x1)>g(x2),从而证明x1+x2>2.【题目详解】(1)∵f(x)=xlnxx2﹣ax+1,∴g(x)=f'(x)=lnx﹣x+1﹣a(x>0),∴g'(x)令g'(x)=0,则x=1,∴当x>1时,g'(x)<0;当0<x<1时,g'(x)>0,∴g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞);(2)∵f(x)有两个极值点x1,x2,∴x1,x2是g(x)的两零点,则g(x1)=g(x2)=0,不妨设0<x1<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版设计创意保密协议书
- 二零二五版售后维护保障协议
- 二零二五版房产抵押合同样板
- 双方自愿离婚协议书格式
- 代持协议合同书二零二五年
- 2025授权专卖店特许经营合同制定指南
- 2025中外合作开发合同样本(合同版本)
- 2025出国留学咨询服务合同
- 2025深圳工程装修施工合同
- 口腔科院感知识培训内容
- 2024年4月自考02378信息资源管理试题及答案
- 2024年关于加强社区工作者队伍建设的意见课件
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 《中电联团体标准-220kV变电站并联直流电源系统技术规范》
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
- MOOC 创业基础-暨南大学 中国大学慕课答案
- (2024年)面神经炎课件完整版
- 南方报业传媒集团笔试题
- 城投集团招聘真题
- 选矿厂尾矿库初步设计方案
- 不良资产尽职调查工作底稿表
评论
0/150
提交评论