版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市汇文中学数学高二下期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为得到函数的图象,只需将函数图象上所有的点()A.横坐标缩短到原来的倍B.横坐标伸长到原来的倍C.横坐标缩短到原来的倍,再向右平移个单位D.横坐标伸长到原来的倍,再向右平移个单位2.设随机变量,,则()A. B. C. D.3.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位4.已知ξ服从正态分布,a∈R,则“P(ξ>a)=0.5”是“关于x的二项式的展开式的常数项为3”的()A.充分不必要条件 B.必要不充分条件C.既不充分又不必要条件 D.充要条件5.湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选科组合中某学生选择考历史和化学的概率为()A. B. C. D.6.已知中,,则满足此条件的三角形的个数是()A.0 B.1 C.2 D.无数个7.的值为()A. B. C. D.8.“”是“方程所表示的曲线是椭圆”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.10.过点,且与直线平行的直线的方程为()A. B. C. D.11.若复数(其中为虚数单位,)为纯虚数,则等于()A. B. C. D.12.已知为两个不同平面,为直线且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.公元前3世纪,古希腊数学家阿波罗尼斯在前人的基础上写了一部划时代的著作《圆锥曲线论》,该书给出了当时数学家们所研究的六大轨迹问题,其中之一便是“到两个定点的距离之比等于不为1的常数的轨迹是圆”,简称“阿氏圆”.用解析几何方法解决“到两个定点,的距离之比为的动点轨迹方程是:”,则该“阿氏圆”的圆心坐标是______,半径是_____.14.设函数,,则函数的递减区间是________.15.求值:__________.16.向量经过矩阵变换后的向量是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某车间名工人年龄数据如表所示:(1)求这名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这名工人年龄的茎叶图;(3)求这名工人年龄的方差.年龄(岁)工人数(人)合计18.(12分)选修4-5:不等式选讲设函数.(Ⅰ)解不等式>2;(Ⅱ)求函数的最小值.19.(12分)随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近60天,每天揽件数量统计如下表:以上数据已做近似处理,并将频率视为概率.(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;(2)①估计该公司对每件包裹收取的快递费的平均值;②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?20.(12分)在数列中,,,其中实数.(1)求,并由此归纳出的通项公式;(2)用数学归纳法证明(Ⅰ)的结论.21.(12分)(选修4-5.不等式选讲)已知函数的最小值为.(1)求实数的值;(2)若,且,求证:.22.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:先将三角函数化为同名函数然后根据三角函数伸缩规则即可.详解:由题可得:,故只需横坐标缩短到原来的倍即可得,故选A.点睛:考查三角函数的诱导公式,伸缩变换,对公式的正确运用是解题关键,属于中档题.2、A【解题分析】
根据正态分布的对称性即可求得答案.【题目详解】由于,故,则,故答案为A.【题目点拨】本题主要考查正态分布的概率计算,难度不大.3、A【解题分析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.4、A【解题分析】试题分析:由,知.因为二项式展开式的通项公式为=,令,得,所以其常数项为,解得,所以“”是“关于的二项式的展开式的常数项为3”的充分不必要条件,故选A.考点:1、正态分布;2、二项式定理;3、充分条件与必要条件.5、C【解题分析】
基本事件总数,在所有选项中某学生选择考历史和化学包含的基本事件总数,由此能求出在所有选项中某学生选择考历史和化学的概率.【题目详解】湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,基本事件总数,在所有选项中某学生选择考历史和化学包含的基本事件总数,在所有选项中某学生选择考历史和化学的概率为.故选.【题目点拨】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.6、C【解题分析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.7、C【解题分析】分析:直接利用微积分基本定理求解即可.详解:,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.8、B【解题分析】分析:根据椭圆的方程以及充分条件和必要条件的定义进行判断即可.详解:若方程表示的曲线为椭圆,则,且,反之,“”不能得到方程所表示的曲线是椭圆”,如故“”是“方程所表示的曲线是椭圆”的必要不充分条件.选B.点睛:本题主要考查充分条件和必要条件的判断,属基础题..9、A【解题分析】
根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【题目详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.10、A【解题分析】
求出直线的斜率,根据两直线平行斜率的性质,可以求出所求直线的斜率,写出点斜式方程,最后化为一般方程.【题目详解】因为的斜率为2,所以所求直线的方程的斜率也为2,因此所求直线方程为,故本题选A.【题目点拨】本题考查了求过一点与已知直线平行的直线的方程.本题也可以这样求解:与直线平行的直线可设为,过代入方程中,,所以直线方程为,一般来说,与直线平行的直线可设为;与直线垂直的直线可设为.11、D【解题分析】
先利用复数的除法将复数表示为一般形式,结合题中条件求出的值,再利用复数求模公式求出.【题目详解】,由于复数为纯虚数,所以,,得,,因此,,故选D.【题目点拨】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.12、B【解题分析】
当时,若,则推不出;反之可得,根据充分条件和必要条件的判断方法,判断即可得到答案.【题目详解】当时,若且,则推不出,故充分性不成立;当时,可过直线作平面与平面交于,根据线面平行的性质定理可得,又,所以,又,所以,故必要性成立,所以“”是“”的必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件和必要条件的判定,关键是掌握充分条件和必要条件的定义,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件;二是由条件能否推得条件.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
将圆化为标准方程即可求得结果.【题目详解】由得:圆心坐标为:,半径为:本题正确结果:;【题目点拨】本题考查根据圆的方程求解圆心和半径的问题,属于基础题.14、【解题分析】,如图所示,其递减区间是.15、1【解题分析】分析:观察通项展开式中的中的次数与中的一致。详解:通项展开式中的,故=点睛:合并二项式的展开式,不要纠结整体的性质,抓住具体的某一项中的中的次数与中的一致,有负号时注意在上还是在上。16、【解题分析】
根据即可求解。【题目详解】根据矩阵对向量的变换可得故答案为:【题目点拨】本题考查向量经矩阵变换后的向量求法,关键掌握住变换的运算法则。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)众数为30,极差为21;(2)见解析;(3)方差,12.6【解题分析】
(1)根据众数和极差的定义,可以求出众数、极差;(2)按照制作茎叶图的方法制作即可;(3)先求出30个数据的平均数,然后按照方差计算公式求出方差.【题目详解】(1)这20名工人年龄的众数为30,极差为;(2)茎叶图如下:(3)年龄的平均数为,故这20名工人年龄的方差为.【题目点拨】本题考查了众数、极差的定义,考查了绘制茎叶图,考查了方差的计算公式.18、(Ⅰ)的解集为.(Ⅱ)最小值【解题分析】
解:(Ⅰ)令,则作出函数的图像,它与直线的交点为和.所以的解集为(Ⅱ)由函数的图像可知,当时,取得最小值.19、(1)(2)①平均值可估计为15元.②公司不应将前台工作人员裁员1人.【解题分析】分析:(1)利用古典概型概率公式可估计样本中包裹件数在之间的概率为,服从二项分布,从而可得结果;(2)①整理所给数据,直接利用平均值公式求解即可;②若不裁员,求出公司每日利润的数学期望,若裁员一人,求出公司每日利润的数学期望,比较裁员前后公司每日利润的数学期望即可得结果.详解:(1)样本中包裹件数在101~300之间的天数为36,频率,故可估计概率为,显然未来5天中,包裹件数在101~300之间的天数服从二项分布,即,故所求概率为(2)①样本中快递费用及包裹件数如下表:包裹重量(单位:)12345快递费(单位:元)1015202530包裹件数43301584故样本中每件快递收取的费用的平均值为,故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,公司快递收入增加15(元),若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450实际揽件数50150250350450频率0.10.10.50.20.150×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260故公司平均每日利润的期望值为(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450实际揽件数50150250300300频率0.10.10.50.20.150×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235故公司平均每日利润的期望值为(元)因,故公司不应将前台工作人员裁员1人.点睛:求解离散型随机变量的数学期望的一般步骤:①“判断取值”,即判断随机变量的所有可能取值以及取每个值所表示的意义;②“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率加法公式、独立事件的概率公式以及对立事件的概率公式等),求出随机变量取每个值时的概率;③“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;④“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度20、(1)(2)见解析【解题分析】试题分析:(1),,可归纳猜测;(2)根据数学归纳法证明原理,当时,由显然结论成立.假设时结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 综合服务总包合同
- 标准代建招标文件样本
- 机房服务合同范本
- 防水材料出口合同
- 落户协助服务合同样本
- 市场营销外包合同协议模板
- 电脑供货合同样板
- 维修工程协议范本
- 消防泵房检测与性能提升合作协议
- 民工劳动报酬支付函
- 国家电投《新能源电站单位千瓦造价标准值(2024)》
- 江森ADS备份及恢复数据操作手册
- 学校电教设备使用记录表
- 工程量清单项目编码完整版
- JJF 1629-2017 烙铁温度计校准规范(高清版)
- 项目工程质量管理体系
- 部编版二年级下册语文拼音练习
- 《高压电动机保护》PPT课件.ppt
- 在全市油气输送管道安全隐患整治工作领导小组第一次会议上的讲话摘要
- 小学英语后进生的转化工作总结3页
- 定喘神奇丹_辨证录卷四_方剂树
评论
0/150
提交评论