云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题含解析_第1页
云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题含解析_第2页
云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题含解析_第3页
云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题含解析_第4页
云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山州第一中学2024届数学高二第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某射击选手每次射击击中目标的概率是0.8,这名选手在10次射击中,恰有8次击中目标的概率为A. B.C. D.2.函数在定义域内可导,其图象如图所示,记的导函数为,则不等式的解集为()A. B.C. D.3.如图,在正方体中,分别是,的中点,则四面体在平面上的正投影是A. B. C. D.4.已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是()A. B. C. D.5.方程所表示的曲线是()A.双曲线的一部分 B.椭圆的一部分 C.圆的一部分 D.直线的一部分6.已知全集,集合,,那么集合()A. B. C. D.7.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件,“摸得的两球不同色”为事件,则概率为()A. B. C. D.8.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.9.2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:观看世界杯不观看世界杯总计男402060女152540总计5545100经计算的观测值.附表:0.050.0250.0100.0050.0013.8415.0246.6357.87910.828参照附表,所得结论正确的是()A.有以上的把握认为“该小区居民是否观看世界杯与性别有关”B.有以上的把握认为“该小区居民是否观看世界杯与性别无关”C.在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”D.在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”10.已知n元均值不等式为:,其中均为正数,已知球的半径为R,利用n元均值不等式求得球的内接正四棱锥的体积的最大值为

A. B. C. D.11.设全集,集合,,则()A. B. C. D.12.下列值等于1的积分是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是,,,,这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).14.展开式中,项的系数为______________15.函数在上的减区间为_____.16.已知抛物线:,点是它的焦点,对于过点且与抛物线有两个不同公共点,的任一直线都有,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).(1)全体排成一行,其中男生甲不在最左边;(2)全体排成一行,其中4名女生必须排在一起;(3)全体排成一行,3名男生两两不相邻.18.(12分)设函数.(1)若为定义域上的单调函数,求实数的取值范围;(2)若,当时,证明:.19.(12分)现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:(Ⅰ)求关于的线性回归方程(计算结果精确到0.01);(Ⅱ)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(Ⅲ)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程中斜率和截距的最小二乘法估计公式分别为20.(12分)已知函数,是偶函数.(1)求的值;(2)解不等式.21.(12分)近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数.环保部门记录了某地区7天的空气质量指数,其中,有4天空气质量为优,有2天空气质量为良,有1天空气质量为轻度污染.现工作人员从这7天中随机抽取3天进行某项研究.(I)求抽取的3天中至少有一天空气质量为良的概率;(Ⅱ)用表示抽取的3天中空气质量为优的天数,求随机变量的分布列和数学期望.22.(10分)已知

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由题意可知,选手射击属于独立重复事件,属于二项分布,按照二项分布求概率即可得到答案.【题目详解】设为击中目标的次数,则,从而这名射手在10次射击中,恰有8次击中目标的概率为.选A.【题目点拨】本题考查独立重复事件发生的概率,考查二项分布公式的运用,属于基础题.2、A【解题分析】

根据导数大于0时函数单调递增,导数小于0时原函数单调递减,确定函数的单调性【题目详解】解:由图象可知,即求函数的单调减区间,从而有解集为,故选:.【题目点拨】本题主要考查了函数的单调性与导数的关系,解题的关键是识图,属于基础题.3、C【解题分析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.4、D【解题分析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若a>b,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.5、B【解题分析】

方程两边平方后可整理出椭圆的方程,由于的值只能取非负数,推断出方程表示的曲线为一个椭圆的一部分.【题目详解】解:两边平方,可变为,即,表示的曲线为椭圆的一部分;故选:.【题目点拨】本题主要考查了曲线与方程.解题的过程中注意的范围,注意数形结合的思想.6、C【解题分析】

先求得集合的补集,然后求其与集合的交集.【题目详解】依题意,故,故选C.【题目点拨】本小题主要考查集合补集的运算,考查集合交集的运算,属于基础题.7、B【解题分析】

根据题目可知,求出事件A的概率,事件AB同时发生的概率,利用条件概率公式求得,即可求解出答案.【题目详解】依题意,,,则条件概率.故答案选B.【题目点拨】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意的求解.8、B【解题分析】

由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【题目详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【题目点拨】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).9、C【解题分析】分析:根据题目的条件中已经给出这组数据的观测值,把所给的观测值同节选的观测值表进行比较,发现它大于7.879,在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”.详解:由题意算得,,参照附表,可得

在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”.

故选:A.点睛:本题考查独立性检验的应用,属基础题.10、A【解题分析】

先根据球和正四棱锥的内接关系求出半径与边长的关系式,写出体积公式,利用n元均值不等式可求最大值.【题目详解】设正四棱锥的底面边长为,高为,则有,解得;正四棱锥的体积,当且仅当时取到最大值,故选A.【题目点拨】本题主要考查四棱锥体积的求解和n元均值不等式的应用,侧重考查数学抽象和数学运算的核心素养.11、B【解题分析】

求得,即可求得,再求得,利用交集运算得解.【题目详解】由得:或,所以,所以由可得:或所以所以故选:B【题目点拨】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.12、C【解题分析】

分别求出被积函数的原函数,然后根据定积分的定义分别计算看其值是否为1即可.【题目详解】解:选项A,xdxx2,不满足题意;选项B,(x+1)dx=(x2+x)1,不满足题意;选项C,1dx=x1﹣0=1,满足题意;选项D,dxx0,不满足题意;故选C.考点:定积分及运算.二、填空题:本题共4小题,每小题5分,共20分。13、45【解题分析】

通过分步乘法原理即可得到答案.【题目详解】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.【题目点拨】本题主要考查分步乘法原理的相关计算,难度很小.14、【解题分析】∴二项式展开式中,含项为∴它的系数为1.故答案为1.15、【解题分析】

利用两角和差的正弦公式化简函数的解析式为,结合正弦函数图像,即可求得函数的减区间.【题目详解】函数根据正弦函数减区间可得:,解得:,故函数的减区间为:再由,可得函数的减区间为故答案为:【题目点拨】本题主要考查三角函数的单调区间的求法,利用正弦函数的图像和性质是解决本题的关键,考查了计算能力,属于基础题.16、【解题分析】

设直线的方程为,联立抛物线的方程得出韦达定理,将翻译成关于点,的关系式,再代入韦达定理求解即可.【题目详解】设直线的方程为,则,设,.则.则由得.代入韦达定理有恒成立.故故答案为:【题目点拨】本题主要考查了直线与抛物线的位置关系,设而不求利用韦达定理翻译题目条件从而进行运算的方法等.属于中等题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)全体排在一行,其中男生甲不在最左边的方法总数为4320种;(2)全体排成一行,其中4名女生必须排在一起的方法总数为576种;(3)全体排成一行,3名男生两两不相邻的方法总数为1440种;【解题分析】

(1)特殊位置用优先法,先排最左边,再排余下位置。(2)相邻问题用捆绑法,将女生看成一个整体,进行全排列,再与其他元素进行全排列。(3)不相邻问题用插空法,先排好女生,然后将男生插入其中的五个空位。【题目详解】(1)先排最左边,除去甲外有种,余下的6个位置全排有种,则符合条件的排法共有种.(2)将女生看成一个整体,进行全排列,再与其他元素进行全排列,共有576种;(3)先排好女生,然后将男生插入其中的五个空位,共有种.答:(1)全体排在一行,其中男生甲不在最左边的方法总数为4320种;(2)全体排成一行,其中4名女生必须排在一起的方法总数为576种;(3)全体排成一行,3名男生两两不相邻的方法总数为1440种.【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.常用的方法技巧有,有特殊元素或特殊位置,对于特殊元素或位置“优先法”,对于不相邻问题,采用“插空法”。对于相邻问题,采用“捆绑法”,对于正面做比较困难时,常采用“间接法”。18、(1);(2)见解析【解题分析】

(1)求得的导数,,得到方程的判别式,分和、三种讨论,求得函数的单调性,即可求解;(2)由,当时,只需,故只需证明当时,,求得函数的单调性与最值,即可求解.【题目详解】(1)由题意,函数的定义域为,则,方程的判别式.(ⅰ)若,即,在的定义域内,故单调递增.(ⅱ)若,则或.若,则,.当时,,当时,,所以单调递增.若,单调递增.(ⅲ)若,即或,则有两个不同的实根,当时,,从而在的定义域内没有零点,故单调递增.当时,,在的定义域内有两个不同的零点,即在定义域上不单调.综上:实数的取值范围为.(2)因为,当,时,,故只需证明当时,.当时,函数在上单调递增,又,故在上有唯一实根,且,当时,,当时,,从而当时,)取得最小值.由得,即,故,所以.综上,当时,.【题目点拨】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19、(1).(2)随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.(3).【解题分析】分析:(1)根据表中数据计算、,求出回归系数,写出回归方程;(2)根据(Ⅰ)中的线性回归方程知x与y是正相关,计算x=95时y的值即可;(3)从中任选连个的所有情况有共六种,至少有一个分数在90分以下的情况有3种,根据古典概型的计算公式进行计算即可.详解:(Ⅰ)由题得,所以所以线性回归方程为(Ⅱ)由于.所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高当时,(Ⅲ)由于95分以下的分数有88,90,90,92,共4个,则从中任选连个的所有情况有,,,,,,共六种.两人中至少有一个分数在90分以下的情况有,,,共3种.故选派的这两个人中至少有一人考核分数在90分以下的概率.点睛:本题考查了线性回归方程的求法与应用问题,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论