版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省邵阳市双清区第十一中学高二数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数对应的点在第二象限,其中m为实数,i为虚数单位,则实数的取值范围()A.(﹣∞,﹣1) B.(﹣1,1)C.(﹣1,2) D.(﹣∞,﹣1)∪(2,+∞)2.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A. B. C. D.3.已知随机变量服从正态分布,且,则()A.0.6826 B.0.1587 C.0.1588 D.0.34134.若,均为单位向量,且,则与的夹角大小为()A. B. C. D.5.已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是()A. B. C. D.6.已知展开式的常数项为15,则()A. B.0 C.1 D.-17.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为x24568y2535605575A.5 B.10 C.12 D.208.祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,若是函数的唯一极值点,则实数的取值范围是()A. B. C. D.10.某班级在一次数学竞赛中为全班同学设置了一等奖、二等奖、三等奖以及参与奖,且奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元、参与奖2元,获奖人数的分配情况如图所示,则以下说法正确的是()A.参与奖总费用最高 B.三等奖的总费用是二等奖总费用的2倍C.购买奖品的费用的平均数为9.25元 D.购买奖品的费用的中位数为2元11.已知满足,其中,则的最小值为()A. B. C. D.112.已知,直线过点,则的最小值为()A.4 B.3 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.在平面上,,,.若,则的取值范围是_______.14.参数方程(为参数,且)化为普通方程是_________;15.随机变量,变量,是__________.16.在二项式的展开式中,前三项的系数依次成等差数列,则展开式中含的项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正项数列中,且(1)分别计算出的值,然后猜想数列的通项公式;(2)用数学归纳法证明你的猜想.18.(12分)甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:测试指标分数甲产品81240328乙产品71840296(1)根据以上数据,完成下面的列联表,并判断是否有的有把握认为两种产品的质量有明显差异?甲产品乙产品合计合格品次品合计(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记为生产1件甲产品和1件乙产品所得的总利润,求随机变量的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).附:0.150.100.050.0250.0100.0050.0012.7022.7063.8415.0246.6357.87910.82819.(12分)已知函数,;.(1)求的最大值;(2)若对,总存在使得成立,求的取值范围;(3)证明不等式.20.(12分)2018年11月21日,意大利奢侈品牌“”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如表.(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;(2)在答题卡上补全列联表中数据;(3)判断能否有的把握认为网友对此事件是否为“强烈关注”与性别有关?一般关注强烈关注合计男45女1055合计100参考公式及数据:0.050.0250.0100.0053.8415.0246.6357.87921.(12分)新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.(1)估计在男生中,选择全文的概率.(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;选择全文不选择全文合计男生5女生合计附:,其中.P()0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.82822.(10分)如图,在四棱锥中,底面是矩形,平面平面,,点在棱上,,点是棱的中点,求证:(1)平面;(2)平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
整理复数为的形式,根据复数对应点在第二象限列不等式组,解不等式组求得的取值范围.【题目详解】i对应点在第二象限,因此有,即,故选B【题目点拨】本小题主要考查复数对应点所在象限,考查一元二次不等式的解法,属于基础题.2、C【解题分析】
将A,B,C三个字捆在一起,利用捆绑法得到答案.【题目详解】由捆绑法可得所求概率为.故答案为C【题目点拨】本题考查了概率的计算,利用捆绑法可以简化运算.3、D【解题分析】分析:根据随机变量符合正态分布,知这组数据是以为对称轴的,根据所给的区间的概率与要求的区间的概率之间的关系,单独要求的概率的值.详解:∵机变量服从正态分布,,
,
∴.故选:D.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,考查根据正态曲线的性质求某一个区间的概率,属基础题.4、C【解题分析】分析:由向量垂直得向量的数量积为0,从而求得,再由数量积的定义可求得夹角.详解:∵,∴,∴,∴,∴.故选C.点睛:平面向量数量积的定义:,由此有,根据定义有性质:.5、C【解题分析】
利用导数研究函数y=的单调性并求得最值,求解方程2[f(x)]2+(1﹣2m)f(x)﹣m=1得到f(x)=m或f(x)=.画出函数图象,数形结合得答案.【题目详解】设y=,则y′=,由y′=1,解得x=e,当x∈(1,e)时,y′>1,函数为增函数,当x∈(e,+∞)时,y′<1,函数为减函数.∴当x=e时,函数取得极大值也是最大值为f(e)=.方程2[f(x)]2+(1﹣2m)f(x)﹣m=1化为[f(x)﹣m][2f(x)+1]=1.解得f(x)=m或f(x)=.如图画出函数图象:可得m的取值范围是(1,).故答案为:C.【题目点拨】(1)本题主要考查利用导数求函数的单调性,考查函数图像和性质的综合运用,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理转化能力.(2)本题的解答关键有两点,其一是利用导数准确画出函数的图像,其二是化简得到f(x)=m或f(x)=.6、A【解题分析】
先求出二项式展开式的通项公式,再令的幂指数等于0,求得的值,即可求得展开式中的常数项,再根据常数项为15,求得的值.【题目详解】解:二项式的展开式的通项公式为,令,求得,可得展开式中的常数项为,由此求得,故选:.【题目点拨】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.7、B【解题分析】分析:先求样本中心,代入方程求解即可。详解:,,代入方程,解得,故选B点睛:回归直线方程必过样本中心。8、A【解题分析】分析:利用祖暅原理分析判断即可.详解:设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.如果截面面积恒相等,那么这两个几何体的体积一定相等,根据祖暅原理可知,p是q的充分不必要条件.故选:A.点睛:本题考查满足祖暅原理的几何体的判断,是基础题,解题时要认真审查,注意空间思维能力的培养.9、A【解题分析】分析:由f(x)的导函数形式可以看出ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kx,g′(x)=ex﹣k,需要对k进行分类讨论来确定导函数为0时的根.详解:∵函数的定义域是(0,+∞),∴f′(x)=.x=1是函数f(x)的唯一一个极值点∴x=1是导函数f′(x)=0的唯一根.∴ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kxg′(x)=ex﹣k①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的g(x)的最小值为g(0)=1,g(x)=0无解②k>0时,g′(x)=0有解为:x=lnk0<x<lnk时,g′(x)<0,g(x)单调递减lnk<x时,g′(x)>0,g(x)单调递增∴g(x)的最小值为g(lnk)=k﹣klnk∴k﹣klnk>0∴k<e,由y=ex和y=ex图象,它们切于(1,e),综上所述,k≤e.故答案为:A.点睛:(1)本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析转化ex﹣kx=0在(0,+∞)无变号零点.10、D【解题分析】
先计算参与奖的百分比,分别计算各个奖励的数学期望,中位数,逐一判断每个选项得到答案.【题目详解】参与奖的百分比为:设人数为单位1一等奖费用:二等奖费用:三等奖费用:参与奖费用:购买奖品的费用的平均数为:参与奖的百分比为,故购买奖品的费用的中位数为2元故答案选D【题目点拨】本题考查了平均值,中位数的计算,意在考查学生的应用能力.11、C【解题分析】
令,利用导数可求得单调性,确定,进而得到结果.【题目详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【题目点拨】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.12、A【解题分析】
先得a+3b=1,再与相乘后,用基本不等式即可得出结果.【题目详解】依题意得,,所以,当且仅当时取等号;故选A【题目点拨】本题考查了基本不等式及其应用,熟记基本不等式即可,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
本题可以通过建立平面直角坐标系,将给的向量条件坐标化,然后把所求的也用坐标表示出来,最后根据式子采用适当的方法得出结果.【题目详解】设,则有因为所以①②③因为所以①+②得即由①②可知带入③中可知综上可得所以,的取值范围是.【题目点拨】在做向量类的题目的时候,可以通过构造直角坐标系,用点的坐标来表示向量以及向量之间的关系,借此来得出答案.14、【解题分析】
利用消去参数可得普通方程。【题目详解】由题意,即,又,∴所求普通方程为。故答案为:。【题目点拨】本题考查参数方程化为普通方程,应用消元法可得,但要注意变量的取值范围,否则会出错。15、40【解题分析】分析:先根据二项分布得,再根据,得详解:因为,所以,因为,所以点睛:二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式.16、【解题分析】
求出二项式展开式的通项,得出展开式前三项的系数,由前三项的系数依次成等差数列求出的值,然后利用的指数为,求出参数的值,并代入通项可得出所求项.【题目详解】二项式展开式的通项为,由题意知,、、成等差数列,即,整理得,,解得,令,解得.因此,展开式中含的项为.故答案为:.【题目点拨】本题考查二项式中指定项的求解,同时也考查了利用项的系数关系求指数的值,解题的关键就是利用展开式通项进行计算,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2)见解析.【解题分析】
(1)逐个计算计算出的值,再通过观察可猜。(2)先检验n=1满足,再假设时(*)式成立,即,下证即可证明。【题目详解】(1)令得化简得,解得或.令得化简得,解得或令得化简得,解得或猜想(*).①当时,,(*)式成立;②假设时(*)式成立,即,那么当时,化简得所以当时,(*)式也成立.综上:由①②得当时,【题目点拨】本题考查归纳-猜想-证明,这一常见思维方式,而与自然数相关的结论证明我们常用数学归纳法。18、(1)没有(2)的分布列见解析,【解题分析】试题分析:(1)由题意完成列联表,然后计算可得,则没有的有把握认为两种产品的质量有明显差异(2)X可能取值为90,45,30,-15,据此依据概率求得分布列,结合分布列可求得数学期望.试题解析:(1)列联表如下:甲产品乙产品合计合格品8075155次品202545合计100100200∴没有的有把握认为两种产品的质量有明显差异(2)依题意,生产一件甲,乙产品为合格品的概率分别为,随机变量可能取值为90,45,30,-15,904530-15的分布列为:∴19、【解题分析】试题分析:(1)对函数求导,,时,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,也是最大值,所以的最大值为;(2)若对,总存在使得成立,则转化为,由(1)知,问题转化为求函数在区间上的最大值,对求导,,分类讨论,当时,函数在上恒成立,在上单调递增,只需满足,,解得,所以;当时,时,(舍),当时,在上恒成立,只需满足,,解得,当,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,可以求出的取值范围。(3)由(1)知:即,取,∴,∴,即∴,等号右端为等比数列求和。试题解析:(1)∵,∴,∴当时,,时,,∴,∴的最大值为.(2),使得成立,等价于由(1)知,,当时,在时恒为正,满足题意.当时,,令,解得,∴在上单调递减,在上单调递增,若,即时,,∴,∴.若,即时,在递减,递增,而,在为正,在为负,∴,当,而时,,不合题意,综上的取值范围为.(3)由(1)知:即,取,∴,∴,即∴.考点:1.导数与函数的单调性和极值;2.导数的综合应用。20、(1)32(2)见解析;(3)见解析【解题分析】
(1)根据频率分布直方图和中位数定义计算可得答案;(2)根据频率分布直方图得,可得列表联中缺失的数据,可得答案;(3)由(2)中的列联表中数据,及,可得的值,对比题中数据可得答案.【题目详解】解:(1)依题意,,所以网友留言条数的中位数为(2)根据频率分布直方图得,网友强烈关注的频率为,所以强烈关注的人数为,因为强烈关注的女行有10人,所以强烈关注的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 都市人生规划分析
- 逻辑学课件南邮王青
- 咳嗽病护理查房
- 太阳能光伏板的电池性能
- 事业单位工作人员退休(职)登记表
- 个人职业规划书短款
- 混凝土缺陷的修补方案
- 2020-2021学年人教部编版语文二年级下册-《当世界年级还小的时候》教案
- 2024幼儿园假期安全
- 颈椎病科普课件
- 外卖配送理论知识考核考核试题及答案
- 医学检验结果互认课件
- 手术医师分级授权管理制度与程序附件2
- 高中地理 植被 (第一课时)教学设计
- 外科学教案-泌尿系统肿瘤
- 国开电大人体解剖生理学(本)形考任务1-4参考答案
- 零件结构的机械加工工艺性课件
- 理论力学-课件
- 初中音乐《玫瑰三愿》教案
- 地质灾害危险性评估收费标准 版
- 保罗大叔分比萨绘本PPT课件
评论
0/150
提交评论