陕西省汉滨区2024届高二数学第二学期期末检测试题含解析_第1页
陕西省汉滨区2024届高二数学第二学期期末检测试题含解析_第2页
陕西省汉滨区2024届高二数学第二学期期末检测试题含解析_第3页
陕西省汉滨区2024届高二数学第二学期期末检测试题含解析_第4页
陕西省汉滨区2024届高二数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉滨区2024届高二数学第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在处的切线方程是()A. B. C. D.2.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.453.已知函数是奇函数,当时,,当时,,则的解集时()A. B.C. D.4.已知一段演绎推理:“因为指数函数是增函数,而是指数函数,所以是增函数”,则这段推理的()A.大前提错误 B.小前提错误 C.结论正确 D.推理形式错误5.过双曲线的一个焦点作垂直于实轴的直线,交双曲线于,是另一焦点,若,则双曲线的离心率等于()A. B. C. D.6.下列关于独立性检验的叙述:①常用等高条形图展示列联表数据的频率特征;②独立性检验依据小概率原理;③样本不同,独立性检验的结论可能有差异;④对分类变量与的随机变量的观测值来说,越小,与有关系的把握程度就越大.其中正确的个数为()A.1 B.2 C.3 D.47.在复平面内,向量对应的复数是,向量对应的复数是,则向量对应的复数对应的复平面上的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知随机变量满足,,则下列说法正确的是()A., B.,C., D.,9.一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A. B. C. D.10.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.某射手射击所得环数的分布列如下:78910已知的数学期望,则的值为()A. B. C. D.12.已知f(x)=2x,x<0a+log2x,x≥0A.-2 B.2 C.0 D.1二、填空题:本题共4小题,每小题5分,共20分。13.甲乙两名选手进行一场羽毛球比赛,采用三局二胜制,先胜两局者赢得比赛,比赛随即结束,已知任一局甲胜的概率为,若甲赢得比赛的概率为,则取得最大值时______14.已知是定义在上的奇函数,若,,则的值为__________.15.在极坐标系中,直线被圆ρ=4截得的弦长为________.16.已知为抛物线上一个动点,定点,那么点到点的距离与点到抛物线的准线的距离之和的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求实数的取值范围.18.(12分)“公益行”是由某公益慈善基金发起并主办的一款将用户的运动数据转化为公益步数的捐助公益项目的产品,捐助规则是满10000步方可捐助且个人捐出10000步等价于捐出1元,现粗略统计该项目中其中200名的捐助情况表如下:捐款金额(单位:元)捐款人数4152261035(1)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在之间人数的分布列;(2)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在的奖励红包5元;捐款额在的奖励红包8元;捐款额在的奖励红包10元;捐款额大于250的奖励红包15元.已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.19.(12分)张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.(1)若,就会迟到,求张华不迟到的概率;(2)求EX.20.(12分)设数列的前项的和为,且满足,对,都有(其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.21.(12分)某快递公司(为企业服务)准备在两种员工付酬方式中选择一种现邀请甲、乙两人试行10天两种方案如下:甲无保底工资送出50件以内(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每送出一件再支付2元分别记录其10天的件数得到如图茎叶图,若将频率视作概率,回答以下问题:(1)记甲的日工资额为(单位:元),求的分布列和数学期望;(2)如果仅从日工资额的角度考虑请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.22.(10分)已知函数,.(I)若,求曲线在点处的切线方程;(Ⅱ)若函数在上是减函数,即在上恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

求导函数,切点切线的斜率,求出切点的坐标,即可得到切线方程.【题目详解】求曲线y=exlnx导函数,可得f′(x)=exlnx∴f′(1)=e,∵f(1)=0,∴切点(1,0).∴函数f(x)=exlnx在点(1,f(1))处的切线方程是:y﹣0=e(x﹣1),即y=e(x﹣1)故选:A.【题目点拨】本题考查导数的几何意义,考查学生的计算能力,属于基本知识的考查.2、C【解题分析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.3、A【解题分析】

对的范围分类讨论,利用已知及函数是奇函数即可求得的表达式,解不等式即可.【题目详解】因为函数是奇函数,且当时,所以当,即:时,,当,即:时,可化为:,解得:.当,即:时,利用函数是奇函数,将化为:,解得:所以的解集是故选A【题目点拨】本题主要考查了函数的奇偶性应用,还考查了分类思想及计算能力,属于中档题.4、A【解题分析】

分析该演绎推理的大前提、小前提和结论,结合指数函数的图象和性质判断正误,可以得出正确的答案.【题目详解】该演绎推理的大前提是:指数函数是增函数,小前提是:是指数函数,结论是:是增函数.其中,大前提是错误的,因为时,函数是减函数,致使得出的结论错误.故选:A.【题目点拨】本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题.5、B【解题分析】

根据对称性知是以点为直角顶点,且,可得,利用双曲线的定义得出,再利用锐角三角函数的定义可求出双曲线的离心率的值.【题目详解】由双曲线的对称性可知,是以点为直角顶点,且,则,由双曲线的定义可得,在中,,,故选B.【题目点拨】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.6、C【解题分析】分析:根据独立性检验的定义及思想,可得结论.详解:①常用等高条形图展示列联表数据的频率特征;正确;②独立性检验依据小概率原理;正确;③样本不同,独立性检验的结论可能有差异;正确;④对分类变量与的随机变量的观测值来说,越大,与有关系的把握程度就越大.故④错误.故选C.点睛:本题考查了独立性检验的原理,考查了推理能力,属于基础题.7、C【解题分析】

先求,再确定对应点所在象限【题目详解】,对应点为,在第三象限,选C.【题目点拨】本题考查向量线性运算以及复数几何意义,考查基本分析求解能力,属基础题.8、D【解题分析】分析:利用期望与方差的性质与公式求解即可.详解:随机变量满足,所以,解得,故选D.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.9、B【解题分析】

先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率.【题目详解】解:一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,1.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,1},{2,3},{2,4},{2,5},{2,1},{3,4},{3,5},{3,1},{4,5},{4,1},{5,1},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,1},{2,5},{2,1},{3,5},{3,1},{4,5},{4,1},{5,1}共9个,这2个球中有白球的概率是.故选B.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10、D【解题分析】取,则,但,故;取,则,但是,故,故“”是“”的既不充分也不必要条件,选D.11、B【解题分析】

根据分布列的概率之和是,得到关于和之间的一个关系式,由变量的期望值,得到另一个关于和之间的一个关系式,联立方程,解得的值.【题目详解】由题意可知:,解得.故选:B.【题目点拨】本题考查期望和分布列的简单应用,通过创设情境激发学生学习数学的情感,培养其严谨治学的态度,在学生分析问题、解决问题的过程中培养其积极探索的精神,属于基础题.12、C【解题分析】

由函数fx=2x,x<0a+log2【题目详解】∵函数fx∴f(﹣1)=12∴f[f(﹣1)]=f12解得:a=0,故选:C.【题目点拨】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用表示出,从而将表示为关于的函数,利用导数求解出当时函数的单调性,从而可确定最大值点.【题目详解】甲赢得比赛的概率:,令,则,令,解得:当时,;当时,即在上单调递增;在上单调递减当时,取最大值,即取最大值本题正确结果:【题目点拨】本题考查利用导数求解函数的最值问题,关键是根据条件将表示为关于变量的函数,同时需要注意函数的定义域.14、【解题分析】

根据函数奇偶性和可推导得到函数为周期函数,周期为;将变为,根据奇函数可得,且可求得结果.【题目详解】为奇函数,又是周期为的周期函数又,本题正确结果:【题目点拨】本题考查利用函数的周期性求解函数值的问题,关键是能够利用函数的奇偶性和对称性求解得到函数的周期,从而将所求函数值变为已知的函数值.15、【解题分析】将直线及圆分别化成直角坐标方程:,.利用点到直线距离求出圆心到直线的距离为1.∴长等于16、【解题分析】由抛物线的焦点为,根据抛物线的定义可知点到准线的距离等于点的焦点的距离,设点到抛物线的准线的距离为,所以,可得当三点共线时,点到点的距离与点到准线的距离之和最小,所以最小值为.点睛:本题主要考查了抛物线的定义及其标准方程的应用,解答中把抛物线上的点到准线的距离转化为到抛物线的焦点的距离是解答的关键,这是解答抛物线最值问题的一种常见转化手段,着重考查了学生的转化与化归和数形结合思想的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)先化简集合A,B,再求.(2)先化简集合A,B,再根据AB得到,解不等式得到实数的取值范围.详解:(1)当时,,解得.则.由,得.则.所以.(2)由,得.若AB,则解得.所以实数的取值范围是.点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些知识的掌握水平和基本计算能力.(2)把分式不等式通过移项、通分、因式分解等化成的形式→化成不等式组→解不等式组得解集.18、(1)答案见解析;(2)大约为63万元.【解题分析】试题分析:(1)的所有情况是0,1,2,结合超几何分布的概率公式即可求得分布列;(2)结合分布列考查平均值,据此可得该公司要准备的红包总额大约为63万元.试题解析:(1)捐款额在之间人数的所有情况是0,1,2,,,,所以捐款额在之间人数的分布列为:012(2)设红包金额为,可得的分布列为:0581015所以.又.故该公司要准备的红包总额大约为63万元.19、(1)(2)【解题分析】

(1);.故张华不迟到的概率为.(2)的分布列为

0

1

2

3

4

.20、(1)见解析;(2).【解题分析】分析:(1)因为两式相减,时所以数列是等比数列(2)(3).所以显然分类讨论即可详解:(1)证明:因为,都有,所以两式相减得,即,当时,所以,又因为,所以,所以数列是常数列,,所以是以2为首项,为公比的等比数列.(2)由(1)得.所以.(3)由(1)得..因为,所以当时,,当时,.因此数列的前项的和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论