版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市富源县二中2024届高二数学第二学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在上可导的函数的图像如图所示,则关于的不等式的解集为()A. B. C. D.2.下列函数中,即是奇函数,又在上单调递增的是A. B. C. D.3.函数的图象为()A. B.C. D.4.在中,,,分别为角,,所对的边,若,则()A.一定是锐角三角形 B.一定是钝角三角形C.一定是直角三角形 D.一定是斜三角形5.全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则不同的报名种数是()A. B. C. D.6.设:实数,满足,且;:实数,满足;则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知是定义在上的奇函数,对任意的,均有.当时,,则()A. B. C. D.8.已知下表所示数据的回归直线方程为y,则实数a的值为x23456y3711a21A.16 B.18C.20 D.229.如图,长方形的四个顶点坐标为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将质点随机投入长方形OABC中,则质点落在图中阴影部分的概率为()A. B. C. D.10.一个篮球运动员投篮一次得3分的概率为,得2分的概率为,得0分的概率为0.5(投篮一次得分只能3分、2分、1分或0分),其中、,已知他投篮一次得分的数学期望为1,则的最大值为A. B. C. D.11.已知,设函数若关于的不等式在上恒成立,则的取值范围为()A. B. C. D.12.某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布,从已经生产出的枪管中随机取出一只,则其口径误差在区间内的概率为()(附:若随机变量服从正态分布,则,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.某班有50名同学,一次数学考试的成绩服从正态分布,已知,估计该班学生数学成绩在120分以上有人.15.已知,且,则的最小值是______.16.已知直线a,b和平面,若,且直线b在平面上,则a与的位置关系是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,D是边BC上一点,,,.(1)求DC的长;(2)若,求的面积.18.(12分)已知函数(为常数)与函数在处的切线互相平行.(1)求函数在上的最大值和最小值;(2)求证:函数的图象总在函数图象的上方.19.(12分)已知函数.(1)讨论的单调性;(2)如果,求的取值范围.20.(12分)如图,四边形中,,,,为边的中点,现将沿折起到达的位置(折起后点记为).(1)求证:;(2)若为中点,当时,求二面角的余弦值.21.(12分)已知函数与的图象都过点,且在点处有公共切线.(1)求的表达式;(2)设,求的极值.22.(10分)已知,椭圆C过点,两个焦点为,,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为,直线l与椭圆C相切于点A,斜率为.求椭圆C的方程;求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
分别讨论三种情况,然后求并集得到答案.【题目详解】当时:函数单调递增,根据图形知:或当时:不成立当时:函数单调递减根据图形知:综上所述:故答案选B【题目点拨】本题考查了根据图像判断函数的单调性,意在考查学生的读图能力.2、B【解题分析】分析:对四个选项分别进行判断即可得到结果详解:对于,,,,不是奇函数,故错误对于,,,当时,,函数在上不单调,故错误对于,函数在上单调递减,故错误故选点睛:对函数的奇偶性作出判断可以用其定义法,单调性的判断可以根据函数的图像性质,或者利用导数来判断。3、A【解题分析】
利用导数研究函数的单调性,根据单调性,对比选项中的函数图象,从而可得结果.【题目详解】因为,所以,时,,在上递增;时,,在上递减,只有选项符合题意,故选A.【题目点拨】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4、C【解题分析】分析:由已知构造余弦定理条件:,再结合余弦定理,化简整理得,即一定为直角三角形.详解:由已知,得①由余弦定理:②将①代入②整理得一定为直角三角形故选C点睛:判断三角形形状(1)角的关系:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.①若;则A=B;②若;则A=B或(2)边的关系:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.①若,则;②若,则;③若,则.5、C【解题分析】分析:利用分布计数乘法原理解答即可.详解:全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则每位同学都可以从5科中任选一科,由乘法原理,可得不同的报名种数是故选C.点睛:本题考查分布计数乘法原理,属基础题.6、A【解题分析】
利用充分必要性定义及不等式性质即可得到结果.【题目详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要性不具备,所以是的充分不必要条件.故选A【题目点拨】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7、C【解题分析】
由f(x)=1﹣f(1﹣x),得f(1)=1,确定f()=,利用f(x)是奇函数,即可得出结论.【题目详解】由f(x)=1﹣f(1﹣x),得f(1)=1,令x=,则f()=,∵当x∈[0,1]时,2f()=f(x),∴f()=f(x),即f()=f(1)=,f()=f()=14,f()=f()=14,∵<<,∵对任意的x1,x2∈[﹣1,1],均有(x2﹣x1)(f(x2)﹣f(x1))≥0∴f()=,同理f()=…=f(﹣)=f()=.∵f(x)是奇函数,∴f(﹣)+f(﹣)+…+f(﹣)+f(﹣)=﹣[f(﹣)+f()+…+f()+f()]=﹣,故选:C.【题目点拨】本题考查函数的奇偶性、单调性,考查函数值的计算,属于中档题.8、B【解题分析】
,代入回归直线方程得,所以,则,故选择B.9、A【解题分析】由定积分可得,阴影部分的面积为:,由几何概型公式可得:.本题选择A选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.10、D【解题分析】
设这个篮球运动员得1分的概率为c,由题设知
,解得2a+b=0.5,再由均值定理能求出ab的最大值.【题目详解】设这个篮球运动员得1分的概率为c,
∵这个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,得0分的概率为0.5,
投篮一次得分只能3分、2分、1分或0分,他投篮一次得分的数学期望为1,
∴
,
解得2a+b=0.5,
∵a、b∈(0,1),
∴
=
=
,
∴ab
,
当且仅当2a=b=
时,ab取最大值
.
故选D.
点评:本题考查离散型随机变量的分布列和数学期的应用,是基础题.解题时要认真审题,仔细解答,注意均值定理的灵活运用.11、C【解题分析】
先判断时,在上恒成立;若在上恒成立,转化为在上恒成立.【题目详解】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.【题目点拨】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.12、C【解题分析】
根据已知可得,结合正态分布的对称性,即可求解.【题目详解】.故选:C【题目点拨】本题考查正态分布中两个量和的应用,以及正态分布的对称性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【题目详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为【题目点拨】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14、【解题分析】试题分析:由题设,所以,故,故应填.考点:正态分布的性质及运用.【易错点晴】正态分布是随机变量的概率分布中最有意义最有研究价值的概率分布之一.本题这个分布的是最优秀的分布的原因是从正态分布的图象来看服从这一分布的数据较为集中的分分布在对称轴的两边,而且整个图象关于对称.所以解答这类问题时一定要借助图象的对称性及所有概率(面积)之和为这一性质,否则解题就没了思路,这一点务必要学会并加以应用.15、1【解题分析】
直接将代数式4x+y与相乘,利用基本不等式可求出的最小值.【题目详解】由基本不等式可得,当且仅当,等号成立,因此的最小值为1,故答案为:1.【题目点拨】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16、或【解题分析】
本题可以利用已知条件,然后在图中画出满足条件的图例,然后可以通过图例判断出直线与平面的位置关系.【题目详解】直线和平面,若,且直线在平面上,则与的位置关系是:或.如图:故答案为或.【题目点拨】本题考查直线与平面的位置关系的判断,考查直线与平面的位置关系的基本知识,考查推理能力,考查数形结合能力,当我们在判断直线与平面的位置关系时,可以借助图形判断.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3(2)【解题分析】
(1)在中,中分别使用正弦定理,结合,,即,即得解;(2)在中,中分别使用余弦定理,结合,可解得,分别计算,又可得解.【题目详解】(1)在中,由正弦定理,得.在中,由正弦定理,得.因为,所以,所以.从而有,即.又,所以.(2)在中,由余弦定理,得.在中,由余弦定理,得.由,得.因为,所以.故有.解得.又,所以,.;.故的面积.【题目点拨】本题考查了正弦定理、余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1)最小值为,最大值为;(2)见解析【解题分析】分析:(1)求得,,由已知有,解得,代入得到函数,利用导数求得函数的单调性,进而求得最大值与最小值;(2)令,则只须证恒成立即可,由导数求解函数的单调性和最值,即可作出证明.详解:(1),,由已知有,解得.当时,.令,解得.∴当时,,单调递减;当时,,单调递增;又,,.∴最小值为,最大值为.(2)令,则只须证恒成立即可.∵.显然,单调递增(也可再次求导证明之),且.∴时,,单调递减;时,,单调递增;∴恒成立,所以得证.点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.19、(1)答案见解析;上是增函数;(2).【解题分析】分析:(1)求导得:,分类讨论可知当时,在上是增函数,当时,在上是减函数;在上是增函数.(2)由(1)可知,时,函数有最小值,据此可得关于实数a的不等式,且满足题意,据此可知.详解:(1)求导得:,当时,恒成立,所以在上是增函数,当时,令,则.①当时,,所以在上是减函数;②时,,所以在上是增函数.(2)由(1)可知,时,,,,解得,又由于,综上所述:.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k,把所求问题转化为求函数的最值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.20、(1)见证明;(2)【解题分析】
(1)根据题意,利用线面垂直的判定定理证明面,从而推得;(2)以为原点,以,分别为,建立空间直角坐标,分别求出面的法向量和面的法向量为,根据二面角的余弦值公式即可求解出结果.【题目详解】(1)证明:因为,,,所以面,又因为面,所以.(2)解:以为原点,以,分别为,建立如图所示空间直角坐标系,设,则,,,,,,,设面的法向量,则有取,,,则由,,设面的法向量为,则有取,,,,则,由于二面角的平面角为钝角,所以,其余弦值为.【题目点拨】本题主要考查了通过线面垂直证明线线垂直以及利用向量法求二面角的余弦值,考查空间想象能力、逻辑思维能力和运算能力.21、(1),;(2),【解题分析】分析:(1)把点代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 都市人生规划分析
- 逻辑学课件南邮王青
- 咳嗽病护理查房
- 太阳能光伏板的电池性能
- 事业单位工作人员退休(职)登记表
- 个人职业规划书短款
- 混凝土缺陷的修补方案
- 2020-2021学年人教部编版语文二年级下册-《当世界年级还小的时候》教案
- 2024幼儿园假期安全
- 颈椎病科普课件
- 教学用品租赁合同模板
- 2024年决战行测5000题言语理解与表达(培优b卷)
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 2024广东省春季高考学考英语知识点清单手册(复习必背)
- 国家中小学智慧教育平台培训专题讲座
- 支票打印模板(共5页)
- 太阳系八大行星简介(课堂PPT)
- 三聚氰胺快速检测实验结果及工作曲线与图谱-1
- 最新八卦象数疗法简易实用卡病证症状参考配方咳嗽脾阳虚脾胃
- (完整版)Brownbear绘本
- 康熙字典(繁体字)笔画
评论
0/150
提交评论