版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳东风中学2024届高二数学第二学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在的展开式中,含的项的系数是()A.-10 B.5 C.10 D.-52.已知,若的必要条件是,则a,b之间的关系是()A. B. C. D.3.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线4.过点且与直线垂直的直线方程是()A. B.C. D.5.设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.6.已知,,那么等于()A. B. C. D.7.设,向量,若,则等于()A. B. C.-4 D.48.已知函数,则在处的切线方程为()A. B. C. D.9.设等比数列满足,,则的最大值为A.32 B.128 C.64 D.25610.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种11.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.12.已知Y=5X+1,E(Y)=6,则E(X)的值为A.1 B.5 C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,则成等差数列.类比以上结论有:设等比数列的前项积为,则,__________,成等比数列.14.在正四面体O-ABC中,,D为BC的中点,E为AD的中点,则=______________(用表示).15.直三棱柱中,若,则__________.16.根据如图所示的伪代码,可知输出的结果为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数满足(其中为虚数单位)(1)求;(2)若为纯虚数,求实数的值.18.(12分)随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:年份20142015201620172018年份代码12345省一本线505500525500530录取平均分533534566547580录取平均分与省一本线分差y2834414750(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)参考公式:,.参考数据:,.19.(12分)数列满足,等比数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)已知函数.(I)若,求实数的值;(Ⅱ)判断的奇偶性并证明;(Ⅲ)设函数,若在上没有零点,求的取值范围.21.(12分)骰子是一种质地均匀的正方体玩具,它的六个面上分别刻有1到6的点数.甲、乙两人玩一种“比手气”的游戏.游戏规则如下:在一局游戏中,两人都分别抛掷同一颗骰子两次,若某人两次骰子向上的点数之差的绝对值不大于2,就称他这局“好手气”.(1)求甲在一局游戏中获得“好手气”的概率;(2)若某人获得“好手气”的局数比对方多,称他“手气好”.现甲、乙两人共进行了3局“比手气”游戏,求甲“手气好”的概率.22.(10分)在中,己知(1)求的值;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据,把按二项式定理展开,可得含的项的系数,得到答案.【题目详解】由题意,在的展开中为,所以含的项的系数,故选A.【题目点拨】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,着重考查了推理与运算能力,属于基础题.2、A【解题分析】试题分析:不等式的解集为,不等式的解集为,根据题意可知是的子集,所以有,故选A.考点:绝对值不等式,充要条件的判断.3、D【解题分析】
在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【题目详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;
在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;
在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;
故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.4、B【解题分析】
先求出所求直线的斜率,再写出直线的点斜式方程化简整理即得解.【题目详解】由题得直线的斜率为所以直线的方程为,即:故选B【题目点拨】本题主要考查相互垂直的直线的斜率关系,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解题分析】分析:由已知求得m,画出A表示的平面区域和满足ab>1表示的平面区域,求出对应的面积比即可得答案.详解:由题意,s=,∴m==,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影==(x﹣lnx)=e﹣1﹣lne+ln1=e﹣1.所求的概率为P=,故答案为:D.点睛:(1)本题主要考查几何概型,考查定积分和二项式定理,意在考查学生对这些知识的掌握水平和分析推理能力.(1)解答本题的关键是利用定积分求阴影部分的面积.6、B【解题分析】
根据条件概率公式得出可计算出结果.【题目详解】由条件概率公式得,故选B.【题目点拨】本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.7、D【解题分析】
直接利用向量垂直的充要条件列方程求解即可.【题目详解】因为,且,所以,化为,解得,故选D.【题目点拨】利用向量的位置关系求参数是命题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.8、C【解题分析】分析:求导得到在处的切线斜率,利用点斜式可得在处的切线方程.详解:已知函数,则则即在处的切线斜率为2,又则在处的切线方程为即.故选C.点睛:本题考查函数在一点处的切线方程的求法,属基础题.9、C【解题分析】
先求出通项公式公式,再根据指数幂的运算性质和等差数列的求和公式,可得,令,根据复合函数的单调性即可求出.【题目详解】由,,可得,解得,,,,令,当或时,有最小值,即,的最大值为,故选C.【题目点拨】本题考查了等比数列的通项公式等差数列的求和公式,指数幂的运算性质和复合函数的单调性,属于中档题10、D【解题分析】
不同的分配方案有(C11、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.12、A【解题分析】分析:根据题意及结论得到E(X)=详解:Y=5X+1,E(Y)=6,则E(X)=故答案为A.点睛:这个题目考查的是期望的计算,两个变量如果满足线性关系,.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由于等差数列的特征是差,等比数列的特征是比,因此运用类比推理的思维方法可得:,,成等比数列,应填答案。14、【解题分析】因为在四面体中,为的中点,为的中点,,故答案为.15、【解题分析】
将向量用基向量表示出来得到答案.【题目详解】直三棱柱中,若故答案为【题目点拨】本题考查了空间基向量的知识,意在考查学生的空间想象能力.16、16;【解题分析】
程序语言表示“当型循环结构”,由值控制循环是否终止,当时,输出的值.【题目详解】输出.【题目点拨】阅读程序语言时,要注意循环体执行的次数,何时终止循环是解题的难点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)设,可得,解得从而可得结果;(2)由(1)知,利用为纯虚数可得,从而可得结果.【题目详解】(1)设,由于则:解得:(2)由(1)知又为纯虚数,【题目点拨】本题主要考查的是复数的分类、复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.18、(1);(2)建议李华第一志愿谨慎报考该大学.【解题分析】
(1)由表中的数据代入公式,计算出和,即可得到关于的线性回归方程;(2)结合(1)计算出2019年录取平均分,再根据该大学每年的录取分数X服从正态分布,由正态分布的性质可计算出李华被录取的概率,由此得到结论.【题目详解】(1)由题知:,所以得:故所求回归方程为:;(2)由(1)知:当时,,故该大学2019年的录取平均分为577.1分.又因为所以李华被录取的概率:故建议李华第一志愿谨慎报考该大学.【题目点拨】本题考查线性回归方程以及正态分布,属于中档题.19、(1),;(2).【解题分析】分析:(1)由已知可得数列为等差数列,根据等差数列的通项公式求得;再求出和,进而求出公比,代入等比数列的通项公式,即可求得数列的通项公式;(2)利用错位相减法即可求出数列的前项和.详解:解:(1),所以数列为等差数列,则;,所以,则.(2),则两式相减得整理得.点睛:本题主要考查等差数列、等比数列的定义与通项公式,考查错位相减法求数列前项和,考查学生运算求解能力.错位相减法是必须掌握的求和方法之一:若,其中是公差为d的等差数列,是公比为的等比数列.具体运算步骤如下:1、写出新数列的和.……(1)2、等式左右同时乘以等比数列部分的公比.……(2)3、两式相减.(1)-(2)整理得:注意:首项系数为正,末项系数为负,中间有项.4、求.最后再化简整理为最简形式即可.20、(I);(Ⅱ)为奇函数,证明见解析;(Ⅲ).【解题分析】
(Ⅰ)利用代入原式即得答案;(Ⅱ)找出与的关系即可判断奇偶性;(Ⅲ)函数在上没有零点等价于方程在上无实数解,再设,求出最值即得答案.【题目详解】(Ⅰ)因为,即:,所以.(Ⅱ)函数为奇函数.令,解得,∴函数的定义域关于原点对称,又所以,为奇函数.(Ⅲ)由题意可知,,函数在上没有零点等价于方程在上无实数解,设,则,∴在上单调递减,在上单调递增,∴在上取得极小值,也是最小值,∴,∴的取值范围为.【题目点拨】本题主要考查函数的奇偶性,利用导函数计算函数最值,意在考查学生的转化能力,分析能力,计算能力,难度中等.21、(1);(2).【解题分析】
(1)根据题意,分别求出先后抛掷同一颗骰子两次,以及获得“好手气”所包含的基本事件个数,基本事件个数比即为所求概率;(2)根据题意,得到甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种情况:甲获得3次“好手气”,乙少于3次;甲获得2次“好手气”,乙少于2次;甲获得1次“好手气”,乙获得0次;再由题中数据,即可求出结果.【题目详解】(1)由题意,甲先后抛掷同一颗骰子两次,共有种情况;获得“好手气”包含:,共种情况,因此甲在一局游戏中获得“好手气”的概率为;(2)由(1)可得,甲乙在一局游戏中获得“好手气”的概率均为;现甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁餐饮合同范本版
- 婚介加盟合同协议模板
- 股东借款合同的范本
- 2024年度购房合同的付款方式和时间表3篇
- 幼师职业素养培训
- 解除农村土地承包合同范本 3篇
- 河北农业大学现代科技学院《基因工程药物学实验》2022-2023学年第一学期期末试卷
- 门诊医生2024年度竞业限制协议详解
- 二零二四年度电子商务产品代理合同3篇
- 2024版建筑工程设计合同~仅供于参考2篇
- 防沙治沙施工组织设计说明
- 心肺复苏指南2023年
- 公差与配合基本知识课件
- 三阶魔方学习课件
- 三年级语文上册第八单元集体备课+教材解读+解学设计课件
- 妇幼健康状况分析报告
- 骨科患者的护理评估课件
- 六年级上册数学课件-7.1 百分数的认识 ︳青岛版 (共17张PPT)
- 云教版七年级上册劳技第一章第二节衣服的洗涤与熨烫课件
- 足球竞赛规则裁判法(共56张PPT)
- 监理平行检查记录表格模板
评论
0/150
提交评论