




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市章丘区章丘市第四中学2024届数学高二第二学期期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出()A. B. C. D.2.从图示中的长方形区域内任取一点,则点取自图中阴影部分的概率为()A. B.C. D.3.设曲线在点处的切线与直线垂直,则()A.2 B. C. D.4.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.5.将两颗骰子各掷一次,设事件“两个点数不相同”,“至少出现一个6点”,则概率等于()A. B. C. D.6.平面向量与的夹角为,,,则()A. B. C.0 D.27.若对任意实数,有,则()A. B. C. D.8.在回归分析中,的值越大,说明残差平方和()A.越小 B.越大 C.可能大也可能小 D.以上都不对9.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有()A.16种 B.18种 C.37种 D.48种10.执行如图所示的程序框图,则程序输出的结果为()A. B. C. D.11.若函数=sinxcosx,x∈R,则函数的最小值为A. B. C. D.12.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设为整数,若和被除得的余数相同,则称和对模同余,记为.若,,则的值可以是A.2015 B.2016 C.2017 D.2018二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中各项系数之和为0,则展开式中含的项为__________.14.甲乙两名选手进行一场羽毛球比赛,采用三局二胜制,先胜两局者赢得比赛,比赛随即结束,已知任一局甲胜的概率为,若甲赢得比赛的概率为,则取得最大值时______15.已知抛物线的焦点为,准线为,过的直线与交于,两点,过作,垂足为,的中点为,若,则__16.二项式的展开式中含项的系数为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号
一班
二班三班
四班
五班
六班
频数
5
9
11
9
7
9
满意人数
4
7
8
5
6
6(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.18.(12分)已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边上的中线长为.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.19.(12分)已知函数为奇函数,其中求的值;求使不等式成立的的取值范围.20.(12分)已知函数.(1)已知函数只有一个零点,求的取值范围;(2)若存在,使得成立,求实数的取值范围.21.(12分)将前12个正整数构成的集合中的元素分成四个三元子集,使得每个三元子集中的三数都满足:其中一数等于另外两数之和,试求不同的分法种数.22.(10分)已知圆:,是轴上的动点,分别切圆于两点.(1)若,求及直线的方程;(2)求证:直线恒过定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;…根据这个规律,即可确定第10个图案中正六边形的个数.【题目详解】由图可知,,…故选A.【题目点拨】此类题要能够结合图形,发现规律:当时,2、C【解题分析】
先利用定积分公式计算出阴影部分区域的面积,并计算出长方形区域的面积,然后利用几何概型的概率计算公式可得出答案.【题目详解】图中阴影部分的面积为,长方形区域的面积为1×3=3,因此,点M取自图中阴影部分的概率为.故选C.【题目点拨】本题考查定积分的几何意义,关键是找出被积函数与被积区间,属于基础题.3、D【解题分析】
,直线的斜率为-a.所以a=-2,故选D4、B【解题分析】
分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.5、A【解题分析】解:由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=6、D【解题分析】
先由,求出,再求出,进而可求出【题目详解】因为,所以,所以,所以.故选D【题目点拨】本题主要考查向量模的运算,熟记公式即可,属于基础题型.7、B【解题分析】分析:根据,按二项式定理展开,和已知条件作对比,求出的值,即可求得答案.详解:,且,.故选:B.点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数.8、A【解题分析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.9、C【解题分析】
根据题意,用间接法:先计算3个班自由选择去何工厂的总数,再排除甲工厂无人去的情况,由分步计数原理可得其方案数目,由事件之间的关系,计算可得答案.【题目详解】根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案;则符合条件的有64-27=37种,故选:C.【题目点拨】本题考查计数原理的运用,本题易错的方法是:甲工厂先派一个班去,有3种选派方法,剩下的2个班均有4种选择,这样共有3×4×4=48种方案;显然这种方法中有重复的计算;解题时特别要注意.10、C【解题分析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列.因此当时,.故程序输出的结果为.选C.11、B【解题分析】∵函数,∴函数的最小值为故选B12、C【解题分析】分析:首先求得a的表达式,然后列表猜想的后三位数字,最后结合除法的性质整理计算即可求得最终结果.详解:由题意可得:,结合二项式定理可得:,计算的数值如下表所示:底数指数幂值5155225531255462555312556156255778125583906255919531255109765625据此可猜想最后三位数字为,则:除以8的余数为1,所给选项中,只有2017除以8的余数为1,则的值可以是2017.本题选择C选项.点睛:本题主要考查二项式定理的逆用,学生归纳推理的能力等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据题意,先求出a的值,再利用展开式的通项公式求出对应项.详解:的展开式中各项系数之和为0,令,则,解得.的展开式中通项公式为,令时,展开式中含的项为.故答案为:.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.14、【解题分析】
利用表示出,从而将表示为关于的函数,利用导数求解出当时函数的单调性,从而可确定最大值点.【题目详解】甲赢得比赛的概率:,令,则,令,解得:当时,;当时,即在上单调递增;在上单调递减当时,取最大值,即取最大值本题正确结果:【题目点拨】本题考查利用导数求解函数的最值问题,关键是根据条件将表示为关于变量的函数,同时需要注意函数的定义域.15、16【解题分析】
由题意画出图形,利用几何知识得到直线的斜率,进一步求得直线的方程,与抛物线方程联立,由弦长公式即可得答案.【题目详解】由题意画出图形如图,,为的中点,且,,则直线的倾斜角为,斜率为.由抛物线,得,则直线的方程为.联立,得.则,.【题目点拨】本题主要考查抛物线的定义,直线与抛物线位置关系的应用,以及弦长的求法.16、【解题分析】分析:根据二项式定理的通项公式,写出的系数.详解:所以,当时,所以系数为.点睛:项式定理中的具体某一项时,写出通项的表达式,使其满足题目设置的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】分析:(1)因为在被抽取的50人中,持满意态度的学生共16人,即可得出持满意态度的频率.
(2)ξ的所有可能取值为0,1,2,1.利用超几何分布列的概率计算公式与数学期望计算公式即可得出.详解:因为在被抽取的50人中,持满意态度的学生共16人,所以持满意态度的频率为,据此估计高三年级全体学生持满意态度的概率为.的所有可能取值为0,1,2,1.;;;.的分布列为:
0
1
2
1
P
.点睛:本题考查了超几何分布列的概率计算公式与数学期望计算公式,考查了推理能力与计算能力,属中档题.18、(1);(2)0.【解题分析】
(1)首先根据题意列出方程组,再解方程即可.(2)首先设直线的方程为:,,,则,,联立方程,利用根系关系结合三点共线即可求出.【题目详解】(1)如图所示由题意得为直角三角形,且上的中线长为,所以.则,解得.所以椭圆的标准方程为:.(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..【题目点拨】本题第一问考查椭圆的标准方程,第二问考查直线与椭圆的位置关系,同时考查学生的计算能力,属于中档题.19、(1),.(2)【解题分析】
(1)根据,可化简为,已知,解出的值;(2)根据(1)的结果,解不等式,求的取值范围.【题目详解】解:因为为奇函数,所以对定义域内任意的恒成立即化简得故,,解得,.由知由,得解得综上,满足题意的的取值范围是【题目点拨】本题考查了对数型函数是奇函数求参数取值的问题,属于基础题型,当对数型函数是奇函数时,经常利用,计算求解.20、(1)或;(2)【解题分析】
(1)先求导,再对a分类讨论,研究函数的图像,求得a的取值范围.(2)先转化得到,再构造函数,再利用导数求函数g(x)的最大值得a的取值范围.【题目详解】(1),定义域为①若则,在上为增函数因为,有一个零点,所以符合题意;②若令,得,此时单调递增,单调递减的极大值为,因为只有一个零点,所以,即,所以综上所述或.(2)因为,使得,所以令,即,因为设,,所以在单调递减,又故函数在单调递增,单调递减,的最大值为,故答案为:.【题目点拨】(1)本题主要考查利用导数求函数的单调性和最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)第2问的解题关键有两点,其一是分离参数转化为,其二是构造函数,再利用导数求函数g(x)的最大值得a的取值范围.21、8【解题分析】
设四个子集为,,2,3,4,其中,,,2,3,4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024河南省三门峡中等专业学校工作人员招聘考试及答案
- 2024洞口县凤凰职业技术学校工作人员招聘考试及答案
- 护理工作计划2025
- 租赁合同范本-铲车租赁专用
- 网络安全保障协议:企业信息安全防护合同
- 软件开发与维护合同模板
- 数控加工工艺与编程试题(含参考答案)
- 农业与财务管理的结合
- 研学基地参加创业比赛全程纪实
- 维保安全培训
- 北京2025年北京市农林科学院招聘43人笔试历年参考题库附带答案详解
- 2025年广州市劳动合同范本下载
- 2025-2030气体检测仪器行业市场深度调研及前景趋势与投资研究报告
- 2025年北大荒黑龙江建三江水利投资有限公司招聘笔试参考题库附带答案详解
- 灵活运用知识的2024年ESG考试试题及答案
- 受限空间作业施工方案
- 黄金卷(江苏苏州专用)-【赢在中考·黄金预测卷】2025年中考数学模拟卷
- (一模)2025年广州市普通高中毕业班综合测试(一)政治试卷(含答案)
- 视力防控健康教育
- 安全生产培训新员工三级培训.ppt
- 关于考勤的有关规定
评论
0/150
提交评论