2024届广东省佛山市第四中学数学高二下期末学业水平测试试题含解析_第1页
2024届广东省佛山市第四中学数学高二下期末学业水平测试试题含解析_第2页
2024届广东省佛山市第四中学数学高二下期末学业水平测试试题含解析_第3页
2024届广东省佛山市第四中学数学高二下期末学业水平测试试题含解析_第4页
2024届广东省佛山市第四中学数学高二下期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省佛山市第四中学数学高二下期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A. B. C. D.2.(山西省榆社中学高三诊断性模拟考试)设为数列的前项和,已知,,则A. B.C. D.3.已知,且.则展开式中的系数为()A.12 B.-12 C.4 D.-44.已知i为虚数单位,复数z满足,则复()A.1 B. C.i D.5.斐波那契螺旋线,也称“黄金蜾旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为()A. B. C. D.6.已知函数f(x)=则)等于()A.4 B.-2C.2 D.17.某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有()A.种 B.种 C.种 D.种8.已知i为虚数单位,复数z满足(1-i)·z=2i,是复数z的共轭复数,则下列关于复数z的说法正确的是()A.z=1-i B.C. D.复数z在复平面内表示的点在第四象限9.设,随机变量X,Y的分布列分别为X123Y123PP当X的数学期望取得最大值时,Y的数学期望为()A.2 B. C. D.10.(+)(2-)5的展开式中33的系数为A.-80 B.-40 C.40 D.8011.在四边形中,如果,,那么四边形的形状是()A.矩形 B.菱形 C.正方形 D.直角梯形12.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为,且每次考试相互独立,则甲第3次考试才通过科目二的概率为__________.14.已知定义在上的函数在导函数为,若,且当时,,则满足不等式的实数的取值范围是__________.15.函数在点处切线方程为,则=______.16.已知满足约束条件则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数(a∈R,i为虚数单位)(I)若是纯虚数,求实数a的值;(II)若复数在复平面上对应的点在第二象限,求实数a的取值范围18.(12分)设命题:对任意,不等式恒成立,命题存在,使得不等式成立.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.19.(12分)已知曲线的参数方程为(为参数).以轴正半轴为极轴,以坐标原点为极点建立极坐标系,点的极坐标为,过点的直线与曲线相交于,两点.(1)若直线的斜率,求直线的极坐标方程和曲线的普通方程;(2)求的值.20.(12分)甲乙两人报名参加由某网络科技公司举办的“技能闯关”双人电子竞技比赛,比赛规则如下:每一轮“闯关”结果都采取计分制,若在一轮闯关中,一人过关另一人未过关,过关者得1分,未过关得分;若两人都过关或都未过关则两人均得0分.甲、乙过关的概率分别为和,在一轮闯关中,甲的得分记为.(1)求的分布列;(2)为了增加趣味性,系统给每位报名者基础分3分,并且规定出现一方比另一方多过关三轮者获胜,此二人比赛结束.表示“甲的累积得分为时,最终认为甲获胜”的概率,则,其中,,,令.证明:点的中点横坐标为;(3)在第(2)问的条件下求,并尝试解释游戏规则的公平性.21.(12分)已知函数.(Ⅰ)若在处有极小值,求实数的值;(Ⅱ)若在定义域内单调递增,求实数的取值范围.22.(10分)已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由古典概型及其概率计算公式得:有人表现突出,则县选取的人表现不突出的概率是,得解.【题目详解】由已知有分别从,两个县的15人中各选1人,已知有人表现突出,则共有种不同的选法,又已知有人表现突出,且县选取的人表现不突出,则共有种不同的选法,已知有人表现突出,则县选取的人表现不突出的概率是.故选:B.【题目点拨】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.2、D【解题分析】根据题意,由,得,则,,…,将各式相加得,又,所以,因此,则将上式减下式得,所以.故选D.点睛:此题主要考查了数列通项公式、前项和公式的求解计算,以及错位相消求各法的应用等有关方面的知识与技能,属于中档题型,也是常考知识点.错位相消求和法是一种重要的方法,一般适于所求数列的通项公式是一个等比数列乘于一个等差的形式,将求和式子两边同时乘于等比数列的公比,再两式作差,消去中间项,从而求得前项和公式.3、D【解题分析】

求定积分得到的值,可得的值,再把按照二项式定理展开式,可得中的系数.【题目详解】∵,且,则展开式,故含的系数为,故选D.【题目点拨】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4、C【解题分析】

利用两个复数代数形式的除法法则及虚数单位的幂运算性质,化简复数到最简形式.【题目详解】解:复数,故选:.【题目点拨】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时除以分母的共轭复数,属于基础题.5、B【解题分析】

根据几何概型的概率公式,分别求出阴影部分面积和矩形ABCD的面积,即可求得。【题目详解】由已知可得:矩形的面积为,又阴影部分的面积为,即点取自阴影部分的概率为,故选。【题目点拨】本题主要考查面积型的几何概型的概率求法。6、B【解题分析】,则,故选B.7、A【解题分析】分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.详解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有=141种.故选:A.点睛:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.8、C【解题分析】

把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案.【题目详解】复数在复平面内表示的点在第二象限,故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9、D【解题分析】

利用数学期望结合二次函数的性质求解X的期望的最值,然后求解Y的数学期望.【题目详解】∵,∴当时,EX取得最大值,此时.故选:D【题目点拨】本题主要考查数学期望和分布列的求法,还考查了运算求解的能力,属于中档题.10、C【解题分析】,由展开式的通项公式可得:当时,展开式中的系数为;当时,展开式中的系数为,则的系数为.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.11、A【解题分析】

由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【题目详解】,所以,四边形为平行四边形,由可得出,因此,平行四边形为矩形,故选A.【题目点拨】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.12、B【解题分析】

求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【题目详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【题目点拨】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】甲第3次考试才通过科目二,则前两次都未通过,第3次通过,故所求概率为.填14、【解题分析】分析:根据条件得到函数的对称性,结合函数的单调性和导数之间的关系判断函数的单调性,利用特殊值法进行求解即可.详解:由,得函数关于对称,当时,,即在上单调递减,不妨设,则不等式等价为,即,即,得,故实数的取值范围是.故答案为:.点睛:本题主要考查不等式的求解,利用条件判断函数的对称性和单调性,利用特殊值法是解决本题的关键.15、4【解题分析】分析:因为在点处的切线方程,所以,由此能求出.详解:因为在点处切线方程为,,

所以从而.

即答案为4.点睛:本题考查利用导数研究曲线上某点处的切线方程,解题时要认真审题,仔细解答,注意合理地进行等价转化.16、1【解题分析】

做出满足条件的可行域,根据图形即可求解.【题目详解】约束条件表示的可行域如图中阴影部分所示.由得,则目标函数过点时,取得最大值,.故答案为:1【题目点拨】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(II)【解题分析】

(I)计算出,由其实部为0,虚部不为0可求得值;(II)计算出,由其实部小于0,虚部大于0可求得的取值范围.【题目详解】解:(I)由复数得=()()=3a+8+(6-4a)i若是纯虚数,则3a+8=0,(6-4a)≠0,解得a=-(II)=若在复平面上对应的点在第二象限,则有解得-【题目点拨】本题考查复数的乘除运算,考查复数的概念与几何性质,属于基础题.18、(1)(2)或【解题分析】

(1)考虑命题为真命题时,转化为对任意的成立,解出不等式可得出实数的取值范围;(2)考虑命题为真命题时,则可转化为对任意的成立,可解出实数的取值范围,然后由题中条件得出命题、一真一假,分真假和假真两种情况讨论,于此可求出实数的取值范围.【题目详解】对于成立,而,有,∴,∴存在,使得不等式成立,只需而,∴,∴;(1)若为真,则;(2)若为假命题,为真命题,则一真一假.若为假命题,为真命题,则,所以;若为假命题,为真命题,则,所以.综上,或.【题目点拨】本题考查复合命题的真假与参数的取值范围,考查不等式在区间上成立,一般转化为最值来求解,另外在判断复合命题的真假性时,需要判断简单命题的真假,考查逻辑推理能力,属于中等题.19、(1),;(2)7.【解题分析】

(1)先求出直线的直角坐标方程,再转换为直线的极坐标方程即可(2)利用直线的参数方程及参数的几何意义求解【题目详解】(1)将点的极坐标化为直角坐标为,因为直线的斜率,所以直线的直角坐标方程为,由可知直线的极坐标方程为.因为(为参数),所以曲线的普通方程为.(2)直线的参数方程为(为参数,为直线的倾斜角),代入,整理得,设点,对应的参数分别为,,则,.【题目点拨】本题考查坐标系中点的极坐标与直角坐标的转换、直线直角坐标方程与极坐标方程的转化及利用直线参数方程中参数的几何意义求值20、(1)分布列见解析;(2)见解析;(3),试解释游戏规则的公平性见解析【解题分析】

(1)由题意得:,分别求出相应的概率,由此能求出的分布列.(2)由题意得,,,推导出,根据中点公式能证明点的中点横坐标为;(3)由,求出,从而,,由此推导出甲获胜的概率非常小,说明这种游戏规则是公平的.【题目详解】(1),,,的分布列为:01(2)由题意得:,,.于是,有,整理可得:,根据中点公式有:,命题得证.(3)由(2)可知,于是又,所以,,.表示最终认为甲获胜概率,由计算结果可以看出,在甲过关的概率为0.5,乙过关的概率为0.6时,认为甲获胜的概率为,此时得出甲获胜的概率非常小,说明这种游戏规则是公平的.【题目点拨】本题考查了离散型随机变量的分布列,用概率说明游戏的公平性,考查了学生分析问题、解决问题的能力,属于中档题.21、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由题可得,解方程组求得答案;(Ⅱ)在定义域内单调递增即在上恒成立,所以恒成立,进而求得答案.【题目详解】(Ⅰ)依题意得,即解得,故所求的实数;(Ⅱ)由(Ⅰ)得∵在定义域内单调递增∴在上恒成立即恒成立∵时,,∴所以实数的取值范围为.【题目点拨】本题考查导函数的极值点以及利用导函数解答恒成立问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论