![2024届浙江省温州市数学高二第二学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/38/3A/wKhkGWW7LSOADG3mAAJmAYODblg435.jpg)
![2024届浙江省温州市数学高二第二学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/38/3A/wKhkGWW7LSOADG3mAAJmAYODblg4352.jpg)
![2024届浙江省温州市数学高二第二学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/38/3A/wKhkGWW7LSOADG3mAAJmAYODblg4353.jpg)
![2024届浙江省温州市数学高二第二学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/38/3A/wKhkGWW7LSOADG3mAAJmAYODblg4354.jpg)
![2024届浙江省温州市数学高二第二学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/38/3A/wKhkGWW7LSOADG3mAAJmAYODblg4355.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市数学高二第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.通过随机询问名性别不同的小学生是否爱吃零食,得到如下的列联表:男女总计爱好不爱好总计由算得参照附表,得到的正确结论()A.我们有以上的把握,认为“是否爱吃零食与性别有关”B.我们有以上的把握,认为“是否爱吃零食与性别无关”C.在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别有关”D.在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别无关”2.在的展开式中,的幂指数是整数的共有A.3项 B.4项 C.5项 D.6项3.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.4.命题“,使是”的否定是()A.,使得 B.,使得.C.,使得 D.,使得5.一个正方体的展开如图所示,点,,为原正方体的顶点,点为原正方体一条棱的中点,那么在原来的正方体中,直线与所成角的余弦值为()A. B. C. D.6.设为两条不同的直线,为两个不同的平面,下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则7.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为()()A. B. C. D.8.用数学归纳法证明,则当时左端应在的基础上()A.增加一项 B.增加项C.增加项 D.增加项9.设函数,满足,若函数存在零点,则下列一定错误的是()A. B. C. D.10.已知函数的部分图象如图所示,其中N,P的坐标分别为,,则函数f(x)的单调递减区间不可能为()A. B. C. D.11.假设如图所示的三角形数表的第行的第二个数为,则()A.2046 B.2416 C.2347 D.248612.设复数,是的共轭复数,则()A. B. C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则实数的取值范围______.14.用0到9这10个数字,组成没有重复数字且能被5整除的三位数的个数为__________.15.已知复数,则z的虚部为_____________;16.已知平面向量,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵.(1)求直线在对应的变换作用下所得的曲线方程;(2)求矩阵的特征值与特征向量.18.(12分)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩、物理成绩进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数.,。19.(12分)已知矩阵A=,向量.(1)求A的特征值、和特征向量、;(2)求A5的值.20.(12分)设函数.(1)求过点的切线方程;(2)若方程有3个不同的实根,求的取值范围。(3)已知当时,恒成立,求实数的取值范围.21.(12分)设事件A表示“关于的一元二次方程有实根”,其中,为实常数.(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.22.(10分)新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.(1)估计在男生中,选择全文的概率.(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;选择全文不选择全文合计男生5女生合计附:,其中.P()0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:对照临界值表,由,从而可得结果.详解:根据所给的数据,,而,有以上的把握,认为“是否爱吃零食与性别有关”,故选A.点睛:本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.2、D【解题分析】
根据题目,写出二次项展开式的通项公式,即可求出的幂指数是整数的项的个数。【题目详解】由题意知,要使的幂指数是整数,则必须是的倍数,故当满足条件。即的幂指数是整数的项共有项,故答案选D。【题目点拨】本题主要考查二项式定理的应用,解题关键是熟记二项展开式的公式。3、C【解题分析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.4、D【解题分析】
根据全称命题与特称命题的关系,准确改写,即可求解,得到答案.【题目详解】由题意,根据全称命题与特称命题的关系,可得命题“,使是”的否定为“,使得”故选D.【题目点拨】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】分析:先还原正方体,将对应的字母标出,与所成角等于与所成角,在三角形中,再利用余弦定理求出此角的余弦值即可.详解:还原正方体,如图所示,设,则,与所成角等于与所成角,余弦值为,故选D.点睛:本题主要考查异面直线所成的角以及空间想象能力,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.6、C【解题分析】
通过作图的方法,可以逐一排除错误选项.【题目详解】如图,相交,故A错误如图,相交,故B错误D.如图,相交,故D错误故选C.【题目点拨】本题考查直线和平面之间的位置关系,属于基础题.7、A【解题分析】试题分析:分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,,,长方体上底面截圆锥的截面半径为,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当,时,等号成立,此时利用率为,故选A.考点:1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.8、D【解题分析】
明确从变为时,等式左端的变化,利用末尾数字作差即可得到增加的项数.【题目详解】当时,等式左端为:当时,等式左端为:需增加项本题正确选项:【题目点拨】本题考查数学归纳法的基础知识,关键是明确等式左端的数字变化规律.9、C【解题分析】分析:先根据确定符号取法,再根据零点存在定理确定与可能关系.详解:单调递增,因为,所以或,根据零点存在定理得或或,因此选C.点睛:确定零点往往需将零点存在定理与函数单调性结合起来应用,一个说明至少有一个,一个说明至多有一个,两者结合就能确定零点的个数.10、D【解题分析】
利用排除法,根据周期选出正确答案.【题目详解】根据题意,设函数的周期为T,则,所以.因为在选项D中,区间长度为
∴在区间上不是单调减函数.所以选择D【题目点拨】本题考查了余弦函数的图象与性质的应用问题,解决此类问题需要结合单调性、周期等.属于中等题.11、B【解题分析】
由三角形数表特点可得,利用累加法可求得,进而得到结果.【题目详解】由三角形数表可知:,,,…,,,整理得:,则.故选:.【题目点拨】本题考查数列中的项的求解问题,关键是能够采用累加法准确求得数列的通项公式.12、A【解题分析】
先对进行化简,然后得出,即可算出【题目详解】所以,所以故选:A【题目点拨】本题考查的是复数的运算,较简单.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
函数在上单调递增,等价于在恒成立,再利用最值法运算即可.【题目详解】解:因为,所以,因为函数在上单调递增,所以在恒成立,即在恒成立,又当时,取最小值,即,故答案为:.【题目点拨】本题考查了利用函数的单调性求参数的范围,重点考查了导数的应用,属基础题.14、136【解题分析】分析:由题意,末尾是0或1,分类讨论,即可得出结论.详解:由题意,末尾是0或1.
末尾是0时,没有重复数字且被1整除的三位数有,
末尾是1时,没有重复数字且被1整除的三位数有,
∴用0到9这10个数字,可以组成没有重复数字且被1整除的三位数有,即答案为136.点睛:本题考查计数原理的应用,考查学生的计算能力,比较基础.15、-3【解题分析】
先由除法法则计算出,再写出它的虚部【题目详解】,其虚部为-3。故答案为:-3。【题目点拨】本题考查复数的除法运算,考查复数的概念,属于基础题。16、5【解题分析】
由向量平行关系求出,利用向量模的公式即可得到答案.【题目详解】因为,所以,解得,则,故.【题目点拨】本题考查向量平行以及向量模的计算公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)属于特征值的一个特征向量为,属于特征值的一个特征向量为.【解题分析】
(1)设是直线上任一点,在变换作用下变为,利用矩阵变换关系,将用表示,代入,即可求解;(2)由特征多项式求出特征值,进而求出对应的特征向量.【题目详解】(1)设是直线上任一点,在矩阵变换作用下变为,则,,,,,即,所以变换后的曲线方程为;(2)矩阵的特征多项式为,令,得或,当时,对应的特征向量应满足,得,所以对应的一个特征向量为,当时,对应的特征向量应满足,,得,所以对应的一个特征向量为,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.【题目点拨】本题考查直线在矩阵变换作用下的方程、矩阵的特征值和特征向量,考查计算求解能力,属于基础题.18、(1)物理成绩更稳定.证明见解析;(2)130分,建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高【解题分析】
(1)分别算出物理成绩和数学成绩的方差;(2)利用最小二乘法,求出关于的回归方程,再用代入回归方程,求得.【题目详解】(1),,∴,∴,从而,∴物理成绩更稳定.(2)由于与之间具有线性相关关系,根据回归系数公式得到,,∴线性回归方程为,当时,.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高【题目点拨】本题考查统计中的方差、回归直线方程等知识,考查基本的数据处理能力,要求计算要细心,防止计算出错.19、(1),,,.(2).【解题分析】分析:(1)先根据特征多项式求特征值,再根据特征值求对应特征向量,(2)先将表示为,再根据特征向量定义化简A5,计算即得结果.详解:(1)矩阵的特征多项式为,令,解得,,当时,解得;当时,解得.(2)令,得,求得.所以点睛:利用特征多项式求特征值,利用或求特征向量.20、(1);(2);(3)【解题分析】
求导带入求出切线斜率,再利用点斜式写出切线。求出的单调区间,极值,则在极小值与极大值之间。参变分离,求最值。【题目详解】(1)设切点为切线过(2)对函数求导,得函数令,即,解得,或,即,解得,的单调递增区间是及,单调递减区间是当,有极大值;当,有极小值当时,直线与的图象有3个不同交点,此时方程有3个不同实根。实数的取值范围为(3)时,恒成立,也就是恒成立,令,则,的最小值为,【题目点拨】本题考查曲线上某点的切线方程,两方程的交点问题以及参变分离。属于中档题。21、(Ⅰ);(Ⅱ).【解题分析】试题分析:(1)列出所有可能的事件,结合古典概型公式可得满足题意的概率值为;(2)利用题意画出概率空间,结合几何概型公式可得满足题意的概率值为.试题解析:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程.若事件A发生,则a2-4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.从而数对(a,b)的取值为(0,0),(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年12月重庆电子口岸中心公开招聘4人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 《时尚北京》杂志2024年第5期
- 人工气道管理器械课件
- 《运动系统骨骼肌》课件
- 《高绩效班组打造》课件
- 高中化学-过渡金属(Ⅰ)竞赛课件
- (高清版)DB37∕T 3053-2017 春季萝卜生产技术规程
- 《股票和债券融资》课件
- 2025至2031年中国无纺袋行业投资前景及策略咨询研究报告
- 2025至2031年中国振动棒行业投资前景及策略咨询研究报告
- GB/T 4365-2024电工术语电磁兼容
- 高校体育课程中水上运动的安全保障措施研究
- 山东省德州市2024-2025学年高三上学期1月期末生物试题(有答案)
- 油气勘探风险控制-洞察分析
- GB 12710-2024焦化安全规范
- 本人报废车辆委托书
- 新《安全生产法》安全培训
- 2024年浙江省电力交易员竞赛选拔考试参考题库(含答案)
- 土力学与地基基础(课件)
- 小学道德与法治五年级下册全册优质教案(含课件和素材)
- 啦啦操社团教学计划(共3页)
评论
0/150
提交评论