




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市顺义区、通州区数学高二第二学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则的面积为()A.15 B. C.40 D.2.已知复数,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若直线是曲线的切线,则()A. B.1 C.2 D.4.已知函数在处的导数为l,则()A.1 B. C.3 D.5.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.56 B.72 C.64 D.846.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°7.集合,,则=()A. B.C. D.8.如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.9.将曲线按变换后的曲线的参数方程为()A. B. C. D.10.已知中,,,,点是边的中点,则等于()A.1 B.2 C.3 D.411.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.1612.若偶函数在上单调递减,,,,则、、满足()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正三棱锥底面边长为,侧棱长为,则它的侧面与底面所成二面角的余弦值为________.14.已知平面向量满足,,则的最大值是____.15.________.16.若复数满足(为虚数单位),则的共轭复数__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.18.(12分)某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.(1)若4发子弹全打光,求他击中目标次数的数学期望;(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.19.(12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动”.下表是我市一主干路口监控设备抓拍的5个月内“驾驶员不礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过年驾龄年以上合计能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?20.(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格.(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?21.(12分)某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:(1)请根据上表提供的数据,用相关系数说明与的线性相关程度;(结果保留小数点后两位,参考数据:)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.参考公式:,;相关系数;22.(10分)已知数列()的通项公式为().(1)分别求的二项展开式中的二项式系数之和与系数之和;(2)求的二项展开式中的系数最大的项;(3)记(),求集合的元素个数(写出具体的表达式).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
先利用余弦定理求得,然后利用三角形面积公式求得三角形的面积.【题目详解】由余弦定理得,解得,由三角形面积得,故选B.【题目点拨】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.2、C【解题分析】分析:详解:复数,-1-i,对应的点为(-1,-1)是第四象限点.故答案为:C.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3、C【解题分析】
设切点坐标,求导数,写出切线斜率,由切线过点,求出切点坐标,得切线斜率.【题目详解】直线过定点,设,切点为,,,∴切线方程为,又切点过点,∴,解得.∴.故选:C.【题目点拨】本题考查导数的几何意义,在未知切点时,一般先设切点坐标,由导数得出切线方程,再结合已知条件求出切点坐标,得切线方程.4、B【解题分析】
根据导数的定义可得到,,然后把原式等价变形可得结果.【题目详解】因为,且函数在处的导数为l,所以,故选B.【题目点拨】本题主要考查导数的定义及计算,较基础.5、D【解题分析】分析:每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色和A、C同色两大类.详解:分两种情况:(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的2中颜色中任意取一色):有4×3×2×2=48种;(2)A、C同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的3中颜色中任意取一色):有4×3×1×3=36种.共有84种,故答案为:D.点睛:(1)本题主要考查排列组合的综合问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.6、B【解题分析】
“至少有一个”的否定变换为“一个都没有”,即可求出结论.【题目详解】“三角形的内角中至少有一个不大于60°”时,反设是假设三内角都大于.故选:B.【题目点拨】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.7、C【解题分析】
先化简集合A,B,结合并集计算方法,求解,即可.【题目详解】解得集合,所以,故选C.【题目点拨】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.8、B【解题分析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.9、D【解题分析】由变换:可得:,代入曲线可得:,即为:令(θ为参数)即可得出参数方程.故选D.10、B【解题分析】
利用正弦定理求出的值,用基底表示,,则可以得到的值.【题目详解】解:在中,由正弦定理得,,即,解得,因为,,所以故选B.【题目点拨】本题考查了正弦定理、向量分解、向量数量积等问题,解题的关键是要将目标向量转化为基向量,从而求解问题.11、D【解题分析】
由题计算出抽样的间距为13,由此得解.【题目详解】由题可得,系统抽样的间距为13,则在样本中.故选D【题目点拨】本题主要考查了系统抽样知识,属于基础题.12、B【解题分析】
由偶函数的性质得出函数在上单调递增,并比较出三个正数、、的大小关系,利用函数在区间上的单调性可得出、、的大小关系.【题目详解】偶函数在上单调递减,函数在上单调递增,,,,,,故选:B.【题目点拨】本题考查利用函数的单调性比较函数值的大小关系,解题时要利用自变量的大小关系并结合函数的单调性来比较函数值的大小,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先做出二面角的平面角,再运用余弦定理求得二面角的余弦值.【题目详解】取正三棱锥的底边的中点,连接和,则在底面正中,,且边长为,所以,在等腰中,边长为,所以且,所以就是侧面与底面所成二面角的平面角,所以在中,,故得解.【题目点拨】本题考查二面角,属于基础题.14、2【解题分析】
根据已知条件可设出的坐标,设,,,利用向量数量积的坐标表示,即求的最大值,根据,可得出的轨迹方程,从而求出最大值.【题目详解】设,,,,点是以为圆心,1为半径的圆,,,的最大值是2.故填:2.【题目点拨】本题考查了向量数量积的应用,以及轨迹方程的综合考查,属于中档题型,本题的关键是根据条件设出坐标,转化为轨迹问题.15、【解题分析】
将定积分分为两部分,前一部分根据奇函数积分为0,后一部分转化为几何面积得到答案.【题目详解】为奇函数表示半径为3的半圆面积:为故答案为:【题目点拨】本题考查了定积分的计算,根据奇函数的性质可以简化运算.16、【解题分析】
先由复数的除法运算,求出复数,进而可得出其共轭复数.【题目详解】因为,所以,因此其共轭复数为故答案为【题目点拨】本题主要考查复数的运算,以及共轭复数,熟记运算法则与共轭复数的概念即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求平面与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出平面与平面CMN的法向量的夹角,再由它们之间的关系,易求出平面与平面CMN所成角的大小.详解:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系(如图).则P(0,0,1),C(0,1,0),B(2,0,0),又AN=AB,M、S分别为PB、BC的中点,∴N(,0,0),M(1,0,),S(1,,0),(1)=(1,-1,),=(-,-,0),∴·=(1,-1,)·(-,-,0)=0,[来源:Z.X.X.K]因此CM⊥SN.=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,∴·a=0,·a=0.则∴取y=1,则得=(2,1,-2).平面NBC的法向量,因为平面NBC与平面CMN所成角是锐二面角所以平面NBC与平面CMN所成角的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)(2)见解析【解题分析】分析:(1)他击中目标次数可能取的值为1,1,2,3,4,由题意,随机变量服从二项分布,即~,则可求4发子弹全打光,击中目标次数的数学期望;(2)由题意随机变量可能取的值是1,2,3,4,由此可求他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列详解:(1)他击中目标次数可能取的值为1,1,2,3,4由题意,随机变量服从二项分布,即~(若列出分布列表格计算期望,酌情给分)(2)由题意随机变量可能取的值是1,2,3,412341.91.191.1191.111点睛:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题.19、(1);(2)66;(3)有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【解题分析】分析:(1)由表中数据知:,代入公式即可求得,,从而求得违章人数与月份之间的回归直线方程;(2)把代入回归直线方程即可;(3)求得观测值,从而即可得到答案.详解:(Ⅰ)由表中数据知:∴,,∴所求回归直线方程为.(Ⅱ)由(Ⅰ)知,令,则人,(Ⅲ)由表中数据得,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.点睛:求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同.)20、(1),.(2)时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.【解题分析】分析:(1)根据题意得到,;(2)根据题意得到选择概率较大的即可,分且,且,且三种情况.详解:(1),;(2)①且,∴;②且,;③且,无解;综上,时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.点睛:这个题目考查的是概率的计算以及多项式比较大小的应用,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初升高暑期数学讲义专题07 集合的运算重难点突破(含答案)
- 2025年江西省高速公路投资集团有限责任公司招聘笔试备考题库附答案详解(轻巧夺冠)
- 2023国家能源投资集团有限责任公司第一批社会招聘笔试备考试题及一套答案详解
- 2025福建晋园发展集团有限责任公司权属子公司招聘7人笔试备考题库含答案详解(培优)
- 2025年黑龙江省五常市辅警招聘考试试题题库有答案详解
- 2024年湖南有色金属职业技术学院单招职业适应性测试题库参考答案
- 2025年河北省定州市辅警招聘考试试题题库附答案详解(能力提升)
- 2024年海南健康管理职业技术学院单招职业倾向性测试题库(500题)含答案解析
- 2025年K2学校STEM课程实施效果评估与教育评价体系创新实践研究分析报告
- 热点13+中拉论坛-【探究课堂】备战2025年中考地理三轮热点专题复习课件
- (完整版)英语四级词汇表
- 第五单元 探索1 互联网安全风险及其产生原因教学设计-2023-2024学年苏科版(2023)初中信息科技七年级下册
- 工业污水处理的PLC控制
- GB/T 36548-2024电化学储能电站接入电网测试规程
- 慢性乙型肝炎防治指南(2022年版)
- 人教版(新起点)五年级下册Unit 6 Lesson 3 My Growing-up Story
- 知道网课智慧树《动植物检验检疫学》章节测试答案
- 知道网课智慧《企业数字化营销》测试答案
- 排球运动智慧树知到期末考试答案章节答案2024年成都体育学院
- DZ∕T 0340-2020 矿产勘查矿石加工选冶技术性能试验研究程度要求(正式版)
- 国开可编程控制器应用形考实训任务一
评论
0/150
提交评论