山东省胶州市第一中学2024届数学高二下期末检测试题含解析_第1页
山东省胶州市第一中学2024届数学高二下期末检测试题含解析_第2页
山东省胶州市第一中学2024届数学高二下期末检测试题含解析_第3页
山东省胶州市第一中学2024届数学高二下期末检测试题含解析_第4页
山东省胶州市第一中学2024届数学高二下期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省胶州市第一中学2024届数学高二下期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则“”是“表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3,下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2 C.3 D.43.设全集U={1,3,5,7},集合M={1,|a-5|},MU,M={5,7},则实数a的值为()A.2或-8 B.-8或-2 C.-2或8 D.2或84.已知,则复数()A. B.2 C. D.5.把边长为的正沿边上的高线折成的二面角,则点到的距离是()A. B. C. D.6.在极坐标系中,曲线,曲线,若曲线与交于两点,则线段的长度为()A.2 B. C. D.17.设,则的值为()A.29 B.49C.39 D.598.函数在点处的切线方程为()A. B.C. D.9.下列命题中正确的个数()①“∀x>0,2x>sinx”的否定是“∃x0≤0,2x0≤sinx0”;②用相关指数R2可以刻画回归的拟合效果,A.0 B.1 C.2 D.310.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.11.设,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件12.已知集合,,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平面上画条直线,且满足任何条直线都相交,任何条直线不共点,则这条直线将平面分成__________个部分.14.如图是一个算法流程图,若输入的值为2,则输出的值为_______..15.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答)16.已知,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:年龄段20~2930~3940~4950~60频数1218155经常使用共享单车61251(1)由以上统计数据完成下面的列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?年龄低于40岁年龄不低于40岁总计经常使用共享单车不经常使用共享单车总计附:,.0.250.150.100.0500.0250.0101.3232.0722.7063.8415.0246.635(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.18.(12分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,,,,,分组的频率分布直方图如图所示.根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望.19.(12分)设等差数列的前项和为,是等比数列,且,,,,是否存在,使,且?若存在,求的值.若不存在,则说明理由.20.(12分)在中,已知的平分线交于点,.(1)求与的面积之比;(2)若,,求和.21.(12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.表甲套设备的样本的频数分布表质量指标值频数2103638122(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.甲套设备乙套设备合计合格品不合格品合计附表及公式:,其中;0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成角的大小为,求锐二面角的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

先要理解椭圆方程的基本形式,再利用两个命题的关系即可得出必要不充分.【题目详解】当且时,表示圆,充分性不成立;当表示椭圆时,且,必要性成立,所以“”是“表示椭圆”的必要不充分条件,故选B.【题目点拨】本题考查了椭圆方程的基本形式,以及命题之间的关系.2、D【解题分析】分析:根据甲队比乙队平均每场进球个数多,得到甲对的技术比乙队好判断①;根据两个队的标准差比较,可判断甲队不如乙队稳定;由平均数与标准差进一步可知乙队几乎每场都进球,甲队的表现时好时坏.详解:因为甲队每场进球数为,乙队平均每场进球数为,甲队平均数大于乙队较多,所以甲队技术比乙队好,所以①正确;因为甲队全年比赛进球个数的标准差为,乙队全年进球数的标准差为,乙队的标准差小于甲队,所以乙队比甲队稳定,所以②正确;因为乙队的标准差为,说明每次进球数接近平均值,乙队几乎每场都进球,甲队标准差为,说明甲队表现时好时坏,所以③④正确,故选D.点睛:本题考查了数据的平均数、方差与标准差,其中数据的平均数反映了数据的平均水平,方差与标准差反映了数据的稳定程度,一般从这两个方面对数据作出相应的估计,属于基础题.3、D【解题分析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题.研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.4、A【解题分析】

由题意结合复数的运算法则和复数的性质整理计算即可求得最终结果.【题目详解】由题意可得:,则.本题选择A选项.【题目点拨】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.5、D【解题分析】

取中点,连接,根据垂直关系可知且平面,通过三线合一和线面垂直的性质可得,,从而根据线面垂直的判定定理知平面,根据线面垂直性质知,即为所求距离;在中利用勾股定理求得结果.【题目详解】取中点,连接,如下图所示:为边上的高,即为二面角的平面角,即且平面为正三角形为正三角形又为中点平面,平面又平面即为点到的距离又,本题正确选项:【题目点拨】本题考查立体几何中点到直线距离的求解,关键是能够通过垂直关系在立体图形中找到所求距离,涉及到线面垂直的判定定理和性质定理的应用,属于中档题.6、B【解题分析】

分别将曲线,的极坐标方程化为普通方程,根据直线与圆相交,利用点到直线的距离公式结合垂径定理,可得结果【题目详解】根据题意,曲线曲线,则直线与圆相交,圆的半径为,圆心到直线的距离为设长为,则有,即解得(舍负)故线段的长度为故选【题目点拨】本题主要考查的是极坐标与直角坐标方程的互化,圆的方程以及直线与圆的位置关系,是一道基础题7、B【解题分析】

根据二项式特点知,,,,,为正,,,,,为负,令,得.【题目详解】因为,,,,为正,,,,,为负,令,得,故选:B.【题目点拨】本题主要考查了二项式的系数,还考查了运算求解的能力,属于基础题.8、B【解题分析】

首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【题目详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【题目点拨】本题考查导数的几何意义,属于基础题.9、C【解题分析】

根据含量词命题的否定可知①错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知②错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知③正确;分别在m=0和m≠0的情况下,根据解集为R确定不等关系,从而解得m【题目详解】①根据全称量词的否定可知“∀x>0,2x>sinx”的否定是“∃x②相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近③若“a>b>0,则3a>3b>0④当m=0时,mx2-2当m≠0时,若mx2-2m+1解得:m≥1,则④正确.∴正确的命题为:③④本题正确选项:C【题目点拨】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.10、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.11、A【解题分析】

利用不等式的性质和充分必要条件的定义进行求解;【题目详解】∵可得或,

∴由“”能推出“”,但由“”推不出“”,

∴“”是“”的充分非必要条件,

故选A.【题目点拨】本题主要考查不等式的基本性质和充分必要条件,属于基础题.12、C【解题分析】

利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可.【题目详解】因为,,所以,故选C.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。详解:1条直线将平面分成2个部分,即2条直线将平面分成4个部分,即3条直线将平面分为7个部分,即4条直线将平面分为11个部分,即,所以….根据累加法得所以点睛:本题综合考查了数列的累加法、归纳推理的综合应用。在解题过程中,应用归纳推理是解决较难题目的一种思路和方法,通过分析具体项,找到一般规律,再分析解决问题,属于中档题。14、5【解题分析】

直接模拟程序即可得结论.【题目详解】输入的值为2,不满足,所以,故答案是:5.【题目点拨】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.15、【解题分析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。详解:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起:,第二类:小孩都不在一起:,故不同的合影方法有216+144=360种,故答案为360点睛:考查计数原理和排列组合的综合,对于此类题首先要把题意分析清楚,分清楚所讨论的类别,再根据讨论情况逐一求解即可,注意计算的准确性.16、.【解题分析】分析:对函数的解析式求导,得到其导函数,把代入导函数中,列出关于的方程,进而得到的值.详解:因为,所以,令,得到,解得,故答案为.点睛:本题主要考查了导数的运算,运用求导法则得出函数的导函数,意在考查对基础知识掌握的熟练程度,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】

(1)根据题意填写列联表,由表中数据计算观测值,对照临界值得出结论;(2)用分层抽样法选出6人,利用列举法求出基本事件数,再计算所求的概率值.【题目详解】(1)根据题意填写2×2列联表如下:年龄低于40岁年龄不低于40岁总计经常使用共享单车18624不经常使用共享单车121436总计302050由表中数据,计算所以没有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异.(2)用分层抽样法选出6人,其中20~29岁的有2人,记为A、B,30~39岁的有4人,记为c、d、e、f,再从这6人中随机抽取2人,基本事件为:AB、Ac、Ad、Ae、Af、Be、Bd、Be、Bf、cd、ce、cf、de、df、ef共15种不同取法;则抽取的这2人中恰好有1人年龄在30~39岁的基本事件为:Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8种不同取法;故所求的概率为.【题目点拨】本题考查了学生运用表格求相应统计数据的能力,会运用独立性检验处理实际问题中的关联性问题,考查了分层抽样结果,以及求简单随机事件的概率,可以列举法处理,属于中档题.18、(1)225.6.(2)(i);(ii)分布列见解析;.【解题分析】分析:(1)由矩形面积和为列方程可得,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市每户居民平均用电量的值;(2)(i)由正态分布的对称性可得结果;(ii)因为,则,,从而可得分布列,利用二项分布的期望公式可得结果.详解:(1)由得(2)(i)(ii)因为,∴,.所以的分布列为0123所以点睛:“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19、存在,.【解题分析】

由已知条件,可求出数列和通项公式,由,化简即可得出的值.【题目详解】由,得,,由,得,由,所以且为等差数列,则是公差,由所以,即得,所以,且.所以.【题目点拨】本题主要考查等差数列和等比数列的通项公式,以及数列前项和的定义.20、(1)(2),【解题分析】

由三角形面积公式解出即可.利用余弦定理解出,再根据比值求出和.【题目详解】(1)设与的面积分别为,,则,,因为平分,所以,又因为,所以,∴.(2)在中,由余弦定理得,,∴,由(1)得,∴,.【题目点拨】本题考查三角形的面积公式、余弦定理.属于基础题.21、(1)8600件;(2)列联表见解析,不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.【解题分析】

(1)计算出不合格品率,和不合格品件数,由此求得合格品件数.(2)根据题目所给表格和图像数据,填写好联表,计算出的值,由此判断出“不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论