江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题含解析_第1页
江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题含解析_第2页
江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题含解析_第3页
江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题含解析_第4页
江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市丰城中学2024届数学高二第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A.①② B.③④ C.①④ D.②③2.已知是函数的零点,是函数的零点,且满足,则实数的最小值是().A.-1 B. C. D.3.已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为A.34B.C.74D.4.某大学安排5名学生去3个公司参加社会实践活动,每个公司至少1名同学,安排方法共有()种A.60 B.90 C.120 D.1505.在中,,BC边上的高等于,则()A. B. C. D.6.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种7.已知函数,且对任意的,都有恒成立,则的最大值为()A. B. C. D.8.已知定义在上的函数的图象关于对称,且当时,单调递增,若,则的大小关系是A. B. C. D.9.已知集合则A.[2,3] B.(-2,3] C.[1,2) D.10.设,,,则的值分别为()A.18, B.36, C.36, D.18,11.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.12.已知的周长为9,且,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.中,内角所对的边的长分别为,且,则__________.14.若关于的方程有两个不相等的实数根,则实数的取值范围是__________.15.已知向量与,则的最小值是__________.16.某晚会安排5个摄影组到3个分会场负责直播,每个摄影组去一个分会场,每个分会场至少安排一个摄影组,则不同的安排方法共有______种(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(衡水金卷2018年普通高等学校招生全国统一考试模拟试卷)如图,在三棱柱中,侧棱底面,且,是棱的中点,点在侧棱上运动.(1)当是棱的中点时,求证:平面;(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.18.(12分)已知函数(且).(Ⅰ)当时,求函数的单调区间.(Ⅱ)当时,,求的取值范围.19.(12分)已知平面内点到点的距离和到直线的距离之比为,若动点P的轨迹为曲线C.(I)求曲线C的方程;(II)过F的直线与C交于A,B两点,点M的坐标为设O为坐标原点.证明:.20.(12分)在锐角中,内角,,的对边分别为,,,且.(Ⅰ)求的值;(Ⅱ)若,的面积为,求的值.21.(12分)2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)无意愿有意愿总计男40女5总计2580(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.附参考公式及数据:,其中.0.40100.0050.0010.7081.3232.7066.6357.87910.82822.(10分)已知函数,.(1)当时,方程在区间内有唯一实数解,求实数的取值范围;(2)对于区间上的任意不相等的实数、,都有成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【题目详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【题目点拨】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题2、A【解题分析】

先根据的单调性确定出最小值从而确定出的值,再由不等式即可得到的范围,根据二次函数零点的分布求解出的取值范围.【题目详解】因为,所以当时,,当时,,所以在上递减,在上递增,所以,所以,又因为,所以,因为对应的,且有零点,(1)当时,或,所以,所以,所以,(2)当时,或,此时,所以,综上可知:,所以.故选:A.【题目点拨】本题考查利用导数判断函数的零点以及根据二次函数的零点分布求解参数范围,属于综合性问题,难度较难.其中处理二次函数的零点分布问题,除了直接分析还可以采用画图象的方法进行辅助分析.3、D【解题分析】略视频4、D【解题分析】分析:由题意结合排列组合公式整理计算即可求得最终结果.详解:由题意可知,5人的安排方案为或,结合平均分组计算公式可知,方案为时的方法有种,方案为时的方法有种,结合加法公式可知安排方法共有种.本题选择D选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.5、C【解题分析】试题分析:设,故选C.考点:解三角形.6、B【解题分析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B.7、B【解题分析】

先求出导函数,再分别讨论,,的情况,从而得出的最大值【题目详解】由题可得:;(1)当时,则,由于,所以不可能恒大于等于零;(2)当时,则在恒成立,则函数在上单调递增,当时,,故不可能恒有;(3)当时,令,解得:,令,解得:,令,解得:,故在上单调递减,在上单调递增,则,对任意的,都有恒成立,即,得,所以;先求的最大值:由,令,解得:,令,解得:,令,解得,则在上所以单调递增,在上单调递减,所以;所以的最大值为;综述所述,的最大值为;故答案选B【题目点拨】本题考查函数的单调性,导数的应用,渗透了分类讨论思想,属于中档题。8、D【解题分析】分析:由题意可得函数为偶函数,再根据函数的单调性,以及指数函数和对数函数的性质比较即可得到结果详解:定义在上的函数的图象关于对称,函数的图象关于轴对称即函数为偶函数,,当时,单调递增故选点睛:本题利用函数的奇偶性和单调性判断函数值的大小,根据单调性的概念,只要判定输入值的大小即可判断函数值的大小。9、B【解题分析】有由题意可得:,则(-2,3].本题选择B选项.10、A【解题分析】

由ξ~B(n,p),Eξ=12,Dξ=4,知np=12,np(1﹣p)=4,由此能求出n和p.【题目详解】∵Eξ=12,Dξ=4,∴np=12,np(1﹣p)=4,∴n=18,p.故选A.【题目点拨】本题考查离散型随机变量的期望和方差,解题时要注意二项分布的性质和应用.11、C【解题分析】

本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【题目详解】则.故选C.【题目点拨】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.12、A【解题分析】

由题意利用正弦定理可得,再由余弦定理可得cosC的值.【题目详解】由题意利用正弦定理可得三角形三边之比为3:2:4,再根据△ABC的周长为9,可得.再由余弦定理可得cosC,故选A.【题目点拨】本题主要考查正弦定理和余弦定理的应用,求得是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:利用余弦定理列出关系式,将已知等式变形代入,再利用正弦定理化简得到,进而得到的值.详解:,即,又由余弦定理,正弦定理则,即或.若,,,,由,得,由余弦定理,即有,,.故答案为.点睛:此题考查了正弦定理和余弦定理,熟练掌握定理是解题的关键.14、【解题分析】

关于的方程有两个不相等的实数根,可转化为求有两个不同的解的问题,令,分析的单调性和图像,从而求出c的取值范围.【题目详解】引入函数,则,易知在上单调递减,在上单调递增,所以.又分析知,当时,;当时,;当时,,所以,所以.【题目点拨】本题考查利用导数求函数的零点问题,解题的关键是利用导数讨论函数的单调性,此题属于基础题.15、【解题分析】

,所以,所以,故当时,的最小值是.考点:向量的模点评:本题考查向量的模的最值,解题的关键是能准确的表示出模的函数,再求解最值.16、150【解题分析】

根据题意,先将5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),再进行排列,由分类计数原理计算可得答案.【题目详解】根据题意,5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),①按(1,1,3)进行分队有种,再分配到3个分会场,共有种;②按(1,2,2)进行分队有种,再分配到3个分会场,共有种;再进行相加,共计60+90=150种,故答案为:150.【题目点拨】本题考查排列、组合的实际应用问题,考查分类、分步计数原理的灵活应用,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】试题分析:(1)取线段的中点,连结.可得四边形是平行四边形,,即可证明平面;(2)以为原点,,,所在直线分别为、、轴建立空间直角坐标系,利用向量法二面角的余弦值.试题解析:(1)取线段的中点,连结.∵,∴,且.又为的中点,∴,且.∴,且.∴四边形是平行四边形.∴.又平面平面,∴平面.(2)∵两两垂直,∴以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,如图,∵三棱柱中,平面,∴即为直线与平面所成的角.设,则由,得.∴.∴,设平面的一个法向量为,则令,得,即.又平面的一个法向量为,∴,又二面角的平面角为钝角,∴二面角的余弦值为.18、(Ⅰ)单调减区间为,单调增区间为(Ⅱ)k<0或k【解题分析】

(Ⅰ)求得函数的导数,根据导数的符号,即可求得函数的单调区间;(Ⅱ)当时,,当时,上不等式成立;当时,不等式等价于,设,进而令,利用导数求得函数的单调区间和最值,从而可求得的取值范围.【题目详解】(Ⅰ)由题意,函数f(x),则,当时,,当时,,所以函数的单调减区间为,单调增区间为.(Ⅱ)时,,①当时,上不等式成立,满足题设条件;②当时,,等价于,设,则,设,则,∴在[1,+∞)上单调递减,得,①当,即时,得,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,又单调递减,∴当,得,∴在上单调递增,得,不满足题设条件.综上所述,或.【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19、(I)(II)见解析【解题分析】

(I)根据题目点到点的距离和到直线的距离之比为,列出相应的等式方程,化简可得轨迹C的方程;(II)对直线分轴、l与x轴重合以及l存在斜率且斜率不为零三种情况进行分析,当l存在斜率且斜率不为零时,利用点斜式设直线方程,与曲线C的方程进行联立,结合韦达定理,可推得,从而推出.【题目详解】解:(I)∵到点的距离和到直线的距离之比为.∴,.化简得:.故所求曲线C的方程为:.(II)分三种情况讨论:1、当轴时,由椭圆对称性易知:.2、当l与x轴重合时,由直线与椭圆位置关系知:3、设l为:,,且,,由化简得:,∴,设MA,MB,所在直线斜率分别为:,,则此时,.综上所述:.【题目点拨】本题主要考查了利用定义法求轨迹方程以及直线与圆锥曲线的综合问题.解决直线与圆锥曲线位置关系中常用的数学方法思想有方程思想,数形结合思想以及设而不求的整体代入的技巧与方法.20、(1).(2).【解题分析】试题分析:(1)由题意化简得,由锐角三角形,得,,所以;(2)由,得,所以,由余弦定理解得.试题解析:(Ⅰ),,又为锐角三角形,,,.(Ⅱ)由,得,,,,即.点睛:本题考查解三角形的应用.解三角形在高考中属于基本题型,学生必须掌握其基本解法.本题中涉及到三角形的转化,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论