2024届江苏省南京市江宁区数学高二第二学期期末联考试题含解析_第1页
2024届江苏省南京市江宁区数学高二第二学期期末联考试题含解析_第2页
2024届江苏省南京市江宁区数学高二第二学期期末联考试题含解析_第3页
2024届江苏省南京市江宁区数学高二第二学期期末联考试题含解析_第4页
2024届江苏省南京市江宁区数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市江宁区数学高二第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则A. B.C. D.2.已知命题p:“∀x∈[1,e],a>lnx”,命题q:“∃x∈R,x2-4x+a=0””若“A.(1,4] B.(0,1] C.[-1,1] D.(4,+∞)3.若抛物线上一点到焦点的距离是该点到轴距离的倍,则()A. B. C. D.4.下列函数中,在定义域内单调的是()A. B.C. D.5.已知正实数、、满足,,,则、、的大小关系是()A. B. C. D.6.已知双曲线的一条渐近线恰好是圆的切线,且双曲线的一个焦点到渐近线的距离为,则双曲线的方程为()A. B. C. D.7.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.8.“中国梦”的英文翻译为“”,其中又可以简写为,从“”中取6个不同的字母排成一排,含有“”字母组合(顺序不变)的不同排列共有()A.360种 B.480种 C.600种 D.720种9.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.10.现有五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有()A.120种 B.5种 C.种 D.种11.已知三棱锥外接球的表面积为,是边长为1的等边三角形,且三棱锥的外接球的球心恰好是的中点,则三棱锥的体积为()A. B. C. D.12.下列不等式中正确的有()①;②;③A.①③ B.①②③ C.② D.①②二、填空题:本题共4小题,每小题5分,共20分。13.己知关于的不等式对恒成立,则实数的取值范围是_______.14.的化简结果为____________15.已知数列是等差数列,是等比数列,数列的前项和为.若,则数列的通项公式为_________.16.已知服从二项分布,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)若展开式中的常数项为60,求展开式中除常数项外其余各项系数之和;(2)已知二项式(是虚数单位,)的展开的展开式中有四项的系数为实数,求的值.18.(12分)已知函数.(Ⅰ)求的值及函数的最小正周期;(Ⅱ)当时,求函数的最大值.19.(12分)如图,在四面体中,,分别是线段,的中点,,,,直线与平面所成的角等于.(1)证明:平面平面;(2)求二面角的余弦值.20.(12分)已知函数(1)讨论函数的单调性;(2)若,且,求的取值范围.21.(12分)在平面直角坐标系xoy中,直线l的参数方程为(为参数),曲线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若点在曲线上,求的取值范围;(2)设直线l与曲线交于M、N两点,点Q的直角坐标为,求的值.22.(10分)已知函数.(Ⅰ)求函数的最大值;(Ⅱ)已知,求证.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.2、A【解题分析】

通过判断命题p和q的真假,从而求得参数的取值范围.【题目详解】解:若命题p:“∀∈[1,e],a>ln则a>ln若命题q:“∃x∈R,x2则Δ=16-4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则a>1a≤4解得:1<a≤4.故实数a的取值范围为(1,4].故选A.【题目点拨】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.3、D【解题分析】

利用抛物线的定义列等式可求出的值.【题目详解】抛物线的准线方程为,由抛物线的定义知,抛物线上一点到焦点的距离为,,解得,故选:D.【题目点拨】本题考查抛物线的定义,在求解抛物线上的点到焦点的距离,通常将其转化为该点到抛物线准线的距离求解,考查运算求解能力,属于中等题.4、A【解题分析】

指数函数是单调递减,再判断其它选项错误,得到答案.【题目详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【题目点拨】本题考查了函数的单调性,属于简单题.5、A【解题分析】

计算出的值,然后考虑的大小.【题目详解】因为,所以,则,故选:A.【题目点拨】指对式的比较大小,可以从正负的角度来分析,也可以从同指数的角度来分析大小.6、D【解题分析】分析:根据题意,求出双曲线的渐近线方程,再根据焦点到渐近线的距离为,求得双曲线的参数,即可确定双曲线方程.详解:圆,圆心,原点在圆上,直线的斜率又双曲线的一条渐近线恰好是圆切线,双曲线的一条渐近线方程的斜率为,一条渐近线方程为,且,即由题可知,双曲线的一个焦点到渐近线的距离,解得又有,可得,,双曲线的方程为.故选D.点睛:本题考查双曲线的简单性质的应用,双曲线方程的求法,直线与圆位置关系和点到直线距离的求法,考查计算能力.7、D【解题分析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.8、C【解题分析】从其他5个字母中任取4个,然后与“”进行全排列,共有,故选B.9、C【解题分析】

求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.10、D【解题分析】

先计算每个同学的报名方法种数,利用乘法原理得到答案.【题目详解】A同学可以参加航模、机器人、网页制作三个兴趣小组,共有3种选择.同理BCDE四位同学也各有3种选择,乘法原理得到答案为D【题目点拨】本题考查了分步乘法乘法计数原理,属于简单题目.11、B【解题分析】

设球心到平面的距离为,求出外接球的半径R=,再根据求出,再根据求三棱锥的体积.【题目详解】设球心到平面的距离为,三棱锥外接圆的表面积为,则球的半径为,所以,故,由是的中点得:.故选B【题目点拨】本题主要考查几何体的外接球问题,考查锥体的体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12、B【解题分析】

逐一对每个选项进行判断,得到答案.【题目详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【题目点拨】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

对和讨论,利用二次函数的性质列不等式求实数的取值范围.【题目详解】解:当时,对恒成立;当时,,解得,综合得:,故答案为:.【题目点拨】本题考查二次不等式恒成立的问题,要特别注意讨论二次项系数为零的情况,是基础题.14、18【解题分析】

由指数幂的运算与对数运算法则,即可求出结果.【题目详解】因为.故答案为18【题目点拨】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.15、【解题分析】

先设数列的前项和为,先令,得出求出的值,再令,得出,结合的值和的通项的结构得出数列的通项公式。【题目详解】设数列的前项和为,则.当时,,,;当时,.也适合上式,.由于数列是等差数列,则是关于的一次函数,且数列是等比数列,,可设,则,,因此,。故答案为:。【题目点拨】本题考查利用前项和公式求数列的通项,一般利用作差法求解,即,在计算时要对是否满足通项进行检验,考查计算能力,属于中等题。16、【解题分析】分析:先根据二项分布数学期望公式得,再求.详解:因为服从二项分布,所以所以点睛:本题考查二项分布数学期望公式,考查基本求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或1【解题分析】

(1)求展开式的通项,根据常数项为60解得a的值,然后在原解析式中代入x=1求得各项系数之和,进而求出结果.(2)求出展开式的通项,因为展开式中有四项的系数为实数,所以r的取值为0,2,4,6,则可得出n的所有的可能的取值.【题目详解】解:(1)展开式的通项为,常数项为,由,,得.令,得各项系数之和为.所以除常数项外其余各项系数之和为.(2)展开式的通项为,因为展开式中有四项的系数为实数,且,,所以或1.【题目点拨】本题考查二项式展开式的通项,考查求二项式特定项的系数,以及虚数单位的周期性,属于基础题.18、(Ⅰ),最小正周期为;(Ⅱ)2.【解题分析】

(Ⅰ)整理,得,由周期公式可得解;(Ⅱ)由已知可得,所以,问题得解.【题目详解】(Ⅰ)∵,∴,∴,(Ⅱ)由(Ⅰ)知,,∵,则,∴,∴的最大值为2.【题目点拨】本题考查了辅助角公式和三角函数周期公式,考查了整体法求三角函数的值域,属于中档题.19、(Ⅰ)见证明;(Ⅱ).【解题分析】

(Ⅰ)先证得,再证得,于是可得平面,根据面面垂直的判定定理可得平面平面.(Ⅱ)利用几何法求解或建立坐标系,利用向量求解即可得到所求.【题目详解】(Ⅰ)在中,是斜边的中点,所以.因为是的中点,所以,且,所以,所以.又因为,所以,又,所以平面,因为平面,所以平面平面.(Ⅱ)方法一:取中点,连,则,因为,所以.又因为,,所以平面,所以平面.因此是直线与平面所成的角.故,所以.过点作于,则平面,且.过点作于,连接,则为二面角的平面角.因为,所以,所以,因此二面角的余弦值为.方法二:如图所示,在平面BCD中,作x轴⊥BD,以B为坐标原点,BD,BA所在直线为y轴,z轴建立空间直角坐标系.因为(同方法一,过程略)则,,.所以,,,设平面的法向量,则,即,取,得.设平面的法向量则,即,取,得.所以,由图形得二面角为锐角,因此二面角的余弦值为.【题目点拨】利用几何法求空间角的步骤为“作、证、求”,将所求角转化为解三角形的问题求解,注意计算和证明的交替运用.利用空间向量求空间角时首先要建立适当的坐标系,通过求出两个向量的夹角来求出空间角,此时需要注意向量的夹角与空间角的关系.20、(1)见解析(2)【解题分析】

(1)求导得到,讨论,,三种情况,分别计算得到答案.(2)根据函数单调性得到,解得答案.【题目详解】(1),令或,当时,,则在上单调递增;当时,,在单调递减,在单调递增;当时,,在,单调递减,在单调递增.(2),故,当时,;当时.所以,因为,所以,所以.【题目点拨】本题考查了函数单调性,存在性问题,转化为函数的最值问题是解题的关键.21、(1)(2)【解题分析】

1根据条件可得,设,则然后求出范围即可;(2)根据参数的几何意义,利用一元二次方程根与系数关系式求出结果.【题目详解】1,在曲线上,,,设,,,,,的取值范围;2,,故曲线的直角坐标方程为:直线l的标准参数方程为为参数,代入得:设M,N两点对应的参数分别为,,,故,异号,.【题目点拨】本题考查了参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考察学生的运算能力和转换能力,属基础题.22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论