江苏南通市2024届数学高二第二学期期末经典模拟试题含解析_第1页
江苏南通市2024届数学高二第二学期期末经典模拟试题含解析_第2页
江苏南通市2024届数学高二第二学期期末经典模拟试题含解析_第3页
江苏南通市2024届数学高二第二学期期末经典模拟试题含解析_第4页
江苏南通市2024届数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏南通市2024届数学高二第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若随机变量服从正态分布,则()附:,.A.1.3413 B.1.2718 C.1.1587 D.1.12282.已知集合,则()A. B. C. D.3.某车间加工零件的数量x与加工时间y的统计数据如图:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()零件个数x(个)102030加工时间y(分钟)213039A.112分钟 B.102分钟 C.94分钟 D.84分钟4.函数有极值的充要条件是()A. B. C. D.5.若,且,则“”是“方程表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知命题p:函数的值域为R;命题q:函数是R上的减函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是()A. B. C. D.或7.设函数,()A.3 B.6 C.9 D.128.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.9.函数的单调递减区间是()A. B.与C.与 D.10.已知下表所示数据的回归直线方程为y,则实数a的值为x23456y3711a21A.16 B.18C.20 D.2211.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.12.设,则()A.a<b〈c B.b<a<c C.c〈a〈b D.c<b〈a二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则等于__________.14.若的展开式中,奇数项的系数之和为-121,则n=___________。15.若,则的解析式为________________.16.已知复数是纯虚数,则实数_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线:的参数方程是,(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)分别写出的极坐标方程和的直角坐标方程;(2)若射线的极坐标方程,且分别交曲线、于,两点,求.18.(12分)设函数.(1)求过点的切线方程;(2)若方程有3个不同的实根,求的取值范围。(3)已知当时,恒成立,求实数的取值范围.19.(12分)数列满足).(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.20.(12分)已知函数是奇函数.(1)求;(2)若,求x的范围.21.(12分)[选修4-5:不等式选讲]已知函数.(1)解不等式:;(2)对任意,恒成立,求实数的取值范围.22.(10分)已知曲线的参数方程为(为参数,),直线经过且倾斜角为.(1)求曲线的普通方程、直线的参数方程.(2)直线与曲线交于A、B两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据正态曲线的对称性,以及,可得结果.【题目详解】,故选:C【题目点拨】本题考查正态分布,重点把握正态曲线的对称性,属基础题.2、C【解题分析】

利用对数函数的单调性对集合化简得x|0<x<1},然后求出A∩B即可.【题目详解】={x|0<x<2},∴A∩B={1},故选:C【题目点拨】考查对数不等式的解法,以及集合的交集及其运算.3、B【解题分析】

由已知求得样本点的中心的坐标,代入线性回归方程求得,取求得值即可。【题目详解】解:所以样本的中心坐标为(20,30),代入,得,取,可得,故选:B。【题目点拨】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.4、C【解题分析】因为,所以,即,应选答案C.5、B【解题分析】

由指数函数的单调性可得;由椭圆方程可得,再由充分必要条件的定义,即可得到所求结论.【题目详解】解:若,则,若方程表示焦点在y轴上的椭圆,则,即“”是“方程表示焦点在y轴上的椭圆”的必要不充分条件.故选:【题目点拨】本题考查指数函数的单调性以及椭圆方程,考查充分必要条件的定义,考查推理能力,属于基础题.6、C【解题分析】

分别求命题为真命题时的范围,命题为真命题时的范围;根据或为真命题,且为假命题,得到命题,中有一个真命题,一个假命题,分命题为真命题且命题为假命题和命题为真命题且命题为假命题两类求出的范围.【题目详解】解:命题为真时,即真数部分能够取到大于零的所有实数,故二次函数的判别式,从而;命题为真时,解得.若或为真命题,且为假命题,故和中只有一个是真命题,一个是假命题.若为真,为假时,,无解;若为假,为真时,,解得;综上可得,故选:.【题目点拨】本题考查根据复合命题的真假得到构成其简单命题的真假情况,属于中档题.7、C【解题分析】.故选C.8、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.9、D【解题分析】

求出函数的导函数【题目详解】∵,∴.由,解得,∴函数的单调递减区间是.故选D.【题目点拨】利用导数求函数f(x)的单调区间的一般步骤:①确定函数f(x)的定义域;②求导数;③在函数f(x)的定义域内解不等式和;④根据③的结果确定函数f(x)的单调区间.10、B【解题分析】

,代入回归直线方程得,所以,则,故选择B.11、B【解题分析】

解:根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得,故选B.12、D【解题分析】分析:先对a,b,c,进行化简,然后进行比较即可.详解:,又故,故选D.点睛:考查对指数幂的化简运算,定积分计算,比较大小则通常进行估算值的大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、15.【解题分析】

先由,,结合,求出,然后再求出.【题目详解】,,,,..故答案为:15.【题目点拨】本题以数列的表示法递推法为背景,考查利用递推关系求数列中的项,考查基本运算求解能力.14、5【解题分析】

令和,作和即可得到奇数项的系数和,从而构造出方程解得结果.【题目详解】令得:令得:奇数项的系数和为:,解得:本题正确结果:【题目点拨】本题考查二项式系数的性质应用问题,关键是采用赋值的方式快速得到系数和.15、【解题分析】

利用换元法可求的解析式.【题目详解】令,

∴,则,故,即,故答案为:.【题目点拨】本题考查了函数的解析式的求法,常用求法本题中均有体现,是一道基础题.16、【解题分析】

将化简为的形式,根据复数是纯虚数求得的值.【题目详解】因为为纯虚数,所以.【题目点拨】本小题主要考查复数乘法运算,考查纯虚数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1):,:;(2).【解题分析】试题分析:(1)首先写出的直角坐标方程,再根据互化公式写出极坐标方程,和的直角坐标方程,互化公式为;(2)根据图象分析出.试题解析:(1)将参数方程化为普通方程为,即,∴的极坐标方程为.将极坐标方程化为直角坐标方程为.(2)将代入整理得,解得,即.∵曲线是圆心在原点,半径为1的圆,∴射线与相交,即,即.故.18、(1);(2);(3)【解题分析】

求导带入求出切线斜率,再利用点斜式写出切线。求出的单调区间,极值,则在极小值与极大值之间。参变分离,求最值。【题目详解】(1)设切点为切线过(2)对函数求导,得函数令,即,解得,或,即,解得,的单调递增区间是及,单调递减区间是当,有极大值;当,有极小值当时,直线与的图象有3个不同交点,此时方程有3个不同实根。实数的取值范围为(3)时,恒成立,也就是恒成立,令,则,的最小值为,【题目点拨】本题考查曲线上某点的切线方程,两方程的交点问题以及参变分离。属于中档题。19、(1),;(2)证明见解析.【解题分析】试题分析:(1)分别令,可求解的值,即可猜想通项公式;(2)利用数学归纳法证明.试题解析:(1),由此猜想;(2)证明:当时,,结论成立;假设(,且),结论成立,即当(,且)时,,即,所以,这表明当时,结论成立,综上所述,.考点:数列的递推关系式及数学归纳法的证明.20、(1);(2)或【解题分析】

(1)由为奇函数,得,然后化简求出即可(2)不等式可化为,然后分和两种情况讨论.【题目详解】解:(1)由,得,定义域为.由为奇函数,得,,,,∴,得.(2)易知.不等式可化为,(i)当时,,不等式化为,得,即,解得,联立,得.(ⅱ)当时,,不等式可化为,∵,∴,,∴,即,解得.综上,x的范围为或【题目点拨】本题考查的是奇函数的定义的应用及解指数不等式,一般在原点有意义时用原点处的函数值为0求参数,若在原点处无意义,则如本题解法由定义建立方程求参数。21、(1);(2).【解题分析】分析:(1)解法一:写出分段函数的解析式,讨论的范围,求出分段函数不同自变量范围的不等式的解,再求这些解的并集即可.解法二:写出分段函数的解析式,绘制函数图象,计算函数与的交点坐标,根据函数图象确定不等式的解.解法三:根据绝对值在数轴上的几何意义,确定不等式的解.(2)将恒成立问题转化成问题,确定后,解关于的一元二次不等式,即可求出实数的取值范围.解法一:根据三角不等式,确定函数最小值解法二:根据函数图象,确定函数最小值.详解:(1)解法一:当时,,解得:;当时,,解得:;当时,,解得:,所以不等式的解集为;(1)解法二:令,两个函数的图象如图所示:由图像可知,两函数图象的交点为和,所以不等式即的解集为(注:如果作出函数的图象,写出的解集,可参照解法2的标准给分)解法三:如图,设数轴上与对应的点分别是,那么两点的距离是4,因此区间上的数都是原不等式的解.先在数轴上找出与点的距离之和为的点,将点向左移动2个单位到点,这时有,同理,将点向右移动2个单位到点,这时也有,从数轴上可以看到,点与之间的任何点到点的距离之和都小于8,点的左边或点的右边的任何点到点的距离之和都大于8,所以,原不等式的解集是(2)解法一:,当时“”成立,又任意,恒成立,∴,即,解得:,∴的取值范围为.解法二:作函数的图象如图:由图象可知,函数的最小值为4,(注:如果第(1)问用解法2,可直接由(1)得最小值为4,不必重复说明)又任意,恒成立,∴,即,解得:,∴的取值范围为.点睛:本题考查了绝对值不等式问题,考查绝对值的性质和不等式恒成立问题的求解方法.函绝对值的不等式的解法:(1)定义法;即利用去掉绝对值再解(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;(5)不等式同解变形原理.22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论