版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市宝山区建峰附属高中数学高二下期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,,则()A. B. C. D.2.在区间上任取两个实数a,b,则函数无零点的概率为()A. B. C. D.3.在中,,,,点满足,则等于()A.10 B.9 C.8 D.74.已知是可导函数,且对于恒成立,则A. B.C. D.5.已知是定义在上的奇函数,且,若,则()A.-3 B.0 C.3 D.20196.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X2)等于A. B.C. D.17.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a8.计算:()A. B. C. D.9.若,满足条件,则的最小值为()A. B. C. D.10.已知A(2,0),B(0,1)是椭圆的两个顶点,直线与直线AB相交于点D,与椭圆相交于E,F两点,若,则斜率k的值为()A. B. C.或 D.或11.曲线在点处的切线与坐标轴所围三角形的面积为A. B. C. D.12.在正四棱锥中,,直线与平面所成的角为,为的中点,则异面直线与所成角为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数,,(为虚数单位)则实数__________.14.在二项式展开式中,第五项为________.15.若,则的值是________16.已知函数恰有两个零点,则实数的值为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有名维修工人.(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?18.(12分)设是抛物线的焦点,是抛物线上三个不同的动点,直线过点,,直线与交于点.记点的纵坐标分别为.(Ⅰ)证明:;(Ⅱ)证明:点的横坐标为定值.19.(12分)已知函数(1)当时,求曲线在点处的切线方程;(2)讨论函数的单调性.20.(12分)一个口袋里装有7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有一个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?21.(12分)已知直线:(为参数),曲线:(为参数).(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.22.(10分)设函数的最小值为.(1)求实数m的值;(2)已知,且满足,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先求,再求模.【题目详解】∵,,∴,∴.故选:D.【题目点拨】本题考查空间向量模的坐标运算,掌握空间向量模的坐标运算公式是解题基础.2、D【解题分析】
在区间上任取两个实数a,b,其对应的数对构成的区域为正方形,所求事件构成的区域为梯形区域,利用面积比求得概率.【题目详解】因为函数无零点,所以,因为,所以,则事件函数无零点构成的区域为梯形,在区间上任取两个实数a,b所对应的点构成的区域为正方形,所以函数无零点的概率.【题目点拨】本题考查几何概型计算概率,考查利用面积比求概率,注意所有基本事件构成的区域和事件所含基本事件构成的区域.3、D【解题分析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【题目点拨】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.4、D【解题分析】分析:构造函数,利用导数判断其单调性即可得出.详解:已知是可导函数,且对于恒成立,即恒成立,令,则,函数在R上单调递减,,即,化为.故选:D.点睛:本题是知识点交汇的综合题,考查综合运用函数思想解题的能力,恰当构造函数,利用导数判断单调性是解题的关键.5、B【解题分析】
根据题意,由函数的奇偶性分析可得,函数是周期为4的周期函数,据此求出、、的值,进而结合周期性分析可得答案.【题目详解】解:根据题意,是定义在上的奇函数,则,又由,则有,即,变形可得:,即函数是周期为4的周期函数,是定义在上的奇函数,则,又由,则,故.故选:B.【题目点拨】本题考查函数的奇偶性周期性的综合应用,涉及函数值的计算,属于基础题.6、C【解题分析】
根据超几何分布的概率公式计算各种可能的概率,得出结果【题目详解】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=,P(X=1)=,P(X=2)=,于是P(X<2)=P(X=0)+P(X=1)=故选C【题目点拨】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.7、A【解题分析】
令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【题目详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1⋅故选A.【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.8、B【解题分析】
直接利用组合数公式求解即可.【题目详解】由组合数公式可得.故选:B.【题目点拨】本题考查组合数公式的应用,是基本知识的考查.9、A【解题分析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.10、C【解题分析】
依题可得椭圆的方程,设直线AB,EF的方程分别为,,,且满足方程,进而求得的表达式,根据,求得的表达式,由D在AB上知,进而求得的另一个表达式,两个表达式相等即可求得k.【题目详解】依题设得椭圆的方程为,直线AB,EF的方程分别为,.设,其中,且满足方程,故,由,知,得,由D在AB上知,得.所以,化简得,解得或.故选C.【题目点拨】本题考查椭圆的方程和性质,同时考查直线和椭圆联立,求交点,以及向量共线的坐标表示,考查运算能力,属于中档题.11、D【解题分析】因为曲线,所以切线过点(4,e2)
∴f′(x)|x=4=e2,
∴切线方程为:y-e2=e2(x-4),
令y=0,得x=2,与x轴的交点为:(2,0),
令x=0,y=-e2,与y轴的交点为:(0,-e2),
∴曲线在点(4,e2)处的切线与坐标轴所围三角形的面积s=×2×|-e2|=e2.
故选D.12、C【解题分析】试题分析:连接交于点,连接.因为为中点,所以,所以即为异面直线与所成的角.因为四棱锥为正四棱锥,所以,所以为在面内的射影,所以即为与面所成的角,即,因为,所以所以在直角三角形中,即面直线与所成的角为故选C.考点:直线与平面所成的角,异面直线所成的角【名师点睛】本题考查异面直线所成角,直线与平面所成的角,考查线面垂直,比较基础连接AC,BD交于点O,连接OE,OP,先证明∠PAO即为PA与面ABCD所成的角,即可得出结论.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题得,解方程即得解.【题目详解】由题得,所以.故答案为【题目点拨】本题主要考查复数模的性质和计算,意在考查学生对这些知识的理解掌握水平.14、60【解题分析】
根据二项式的通项公式求解.【题目详解】二项式的展开式的通项公式为:,令,则,故第五项为60.【题目点拨】本题考查二项式定理的通项公式,注意是第项.15、2【解题分析】
利用赋值法,分别令代入式子即可求得的值.【题目详解】因为令,代入可得令,代入可得两式相减可得,即故答案为:2【题目点拨】本题考查了二项式定理的简单应用,赋值法求二项式系数的值是常用方法,属于基础题.16、【解题分析】
令,得,转化为直线与函数的图象有两个交点,于此可得出实数的值。【题目详解】令,得,构造函数,其中,问题转化为:当直线与函数的图象有两个交点,求实数的值。,令,得,列表如下:极小值作出图象如下图所示:结合图象可知,,因此,,故答案为:。【题目点拨】本题考查函数的零点个数问题,由函数零点个数求参数的取值范围,求解方法有如下两种:(1)分类讨论法:利用导数研究函数的单调性与极值,借助图象列出有关参数的不等式组求解即可;(2)参变量分离法:令原函数为零,得,将问题转化为直线与函数的图象,一般要利用导数研究函数的单调性与极值,利用图象求解。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(ⅰ);(ⅱ)不应该.【解题分析】
(1)根据相互独立事件的概率公式计算出事故机器不超过台的概率即可;(2)(i)求出的可能取值及其对应的概率,得出的分布列和数学期望;(ⅱ)求出有名维修工人时的工厂利润,得出结论.【题目详解】解:(1)因为该工厂只有名维修工人,故要使工厂正常运行,最多只有台大型机器出现故障.∴该工厂正常运行的概率为:.(2)(i)的可能取值有,,,.∴的分布列为:X3144P∴.(ⅱ)若工厂再招聘一名维修工人,则工厂一定能正常运行,工厂所获利润为万元,因为,∴该厂不应该再招聘名维修工人.【题目点拨】本题考查了相互独立事件的概率计算,离散型随机变量的分布列与数学期望计算,属于中档题.18、(1)证明见解析.(2)证明见解析.【解题分析】分析:(Ⅰ)因为,所以,所以,所以(Ⅱ)因为直线过点,所以,由(Ⅰ)得,所以,因为即设点坐标为,又因为直线交于点,所以消去得,整理,即可证明点的横坐标为定值.详解:(Ⅰ)因为,所以,所以,所以(Ⅱ)因为直线过点,所以,由(Ⅰ)得,所以,因为即设点坐标为,又因为直线交于点,所以所以消去得,所以,所以,因为,所以,即,所以点的横坐标为定值点睛:本题考查抛物线的性质,抛物线与直线的位置关系,属中档题.19、(1).(2)时,递减区间为;当时,在递减,在递增.【解题分析】
(1)求导数,利用导数的几何意义求曲线f(x)在点(1,f(1))处的切线方程;(2)先求出函数的导数,通过讨论a的取值范围求出函数的单调区间.【题目详解】(1)当时,函数,,∴,,∴曲线在点处的切线方程为(2).当时,,的单调递减区间为;当时,在递减,在递增【题目点拨】本题考查利用导数研究切线方程、函数的单调性,考查学生分析解决问题的能力,是一道基础题.20、(1)56;(2)35;(3)21【解题分析】
分析:(1)从口袋里的个球中任取个球,利用组合数的计算公式,即可求解.(2)从口袋里的个球中任取个球,其中恰有一个红球,可以分两步完成:第一步,从个白球中任取个白球,第二步,把个红球取出,即可得到答案.(3)从口袋里任取个球,其中不含红球,只需从个白球中任取个白球即可得到结果.详解:(1)从口袋里的个球中任取个球,不同取法的种数是(2)从口袋里的个球中任取个球,其中恰有一个红球,可以分两步完成:第一步,从个白球中任取个白球,有种取法;第二步,把个红球取出,有种取法.故不同取法的种数是:(3)从口袋里任取个球,其中不含红球,只需从个白球中任取个白球即可,不同取法的种数是.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 档案数字化培训教材
- 2024年度技术开发合同研发成果归属与使用3篇
- 猪场租赁合同系列
- 自愿解除劳动合同书范文
- 赊销合同协议书
- 合理分配财务资源的方式计划
- 二零二四年度钢筋供应合同的违约责任规定合同2篇
- 幼儿园社交能力培养的教研计划
- 创业道路上的每月目标与挑战计划
- 美术教师职业道德与素养提升计划
- 2024茶山茶叶种植基地合作协议
- 电气自动化专业职业生涯规划实现职业梦想
- RBA管理体系程序文件(系列)
- 六年级语文-文言文阅读训练题50篇-含答案
- 广东省高级人民法院民一庭关于建设工程施工合同纠纷案件若干问题的意见
- 家装施工组织设计方案模板
- 110kV兑山变电站进线工程(钢管杆组立)施工方案
- 卡特彼勒 C-9 发动机介绍ppt课件
- 自动生成编号抽奖券模板
- 公司付款承诺书4篇
- 属水十画的字大全
评论
0/150
提交评论