![2024届新疆巴州三中数学高二第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M02/1F/3E/wKhkGWW7JPCACCFHAAG3U4yz6V0104.jpg)
![2024届新疆巴州三中数学高二第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M02/1F/3E/wKhkGWW7JPCACCFHAAG3U4yz6V01042.jpg)
![2024届新疆巴州三中数学高二第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M02/1F/3E/wKhkGWW7JPCACCFHAAG3U4yz6V01043.jpg)
![2024届新疆巴州三中数学高二第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M02/1F/3E/wKhkGWW7JPCACCFHAAG3U4yz6V01044.jpg)
![2024届新疆巴州三中数学高二第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M02/1F/3E/wKhkGWW7JPCACCFHAAG3U4yz6V01045.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆巴州三中数学高二第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.2.设直线l1,l2分别是函数f(x)=-lnx,0<x<1,lnx,x>1,图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)3.点的直角坐标为,则点的极坐标为()A.B.C.D.4.()A.9 B.12 C.15 D.35.函数是()A.偶函数且最小正周期为2 B.奇函数且最小正周期为2C.偶函数且最小正周期为 D.奇函数且最小正周期为6.设随机变量X~N(0,1),已知,则()A.0.025 B.0.050C.0.950 D.0.9757.设,,,,则()A. B. C. D.8.已知向量,,若∥,则A. B. C. D.9.已知有相同两焦点F1、F2的椭圆+y2=1和双曲线-y2=1,P是它们的一个交点,则ΔF1PF2的形状是()A.锐角三角形 B.直角三角形 C.钝有三角形 D.等腰三角形10.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如8455用算筹表示就是,则以下用算筹表示的四位数正确的为()A. B.C. D.11.给出下列命题:①过圆心和圆上的两点有且只有一个平面②若直线与平面平行,则与平面内的任意一条直线都没有公共点③若直线上有无数个点不在平面内,则④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行⑤垂直于同一个平面的两条直线平行其中正确的命题的个数是A.1 B.2 C.3 D.412.下列运算正确的为()A.(为常数) B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数是__________.14._______.15.已知向量与,则的最小值是__________.16.已知函数,若存在,使得,则实数的取值范围__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q(p>qξ
0
1
2
3
p
6125a
b
24125(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求p,q的值;(Ⅲ)求数学期望Eξ。18.(12分)(江苏省南通市高三最后一卷---备用题数学试题)已知函数,其中.(1)当时,求函数处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.19.(12分)某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为,求取最大值时p的值;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的作为p的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a元的赔偿费用.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?20.(12分)若是定义在上的增函数,且.(Ⅰ)求的值;(Ⅱ)解不等式:;21.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.22.(10分)已知函数在处取到极值.(1)求实数的值,并求出函数的单调区间;(2)求函数在上的最大值与最小值及相应的的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,再利用棱锥的体积公式求解即可.【题目详解】由三棱锥的正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,所以该三棱锥的体积.故选:A【题目点拨】本题主要考查三视图和棱锥的体积公式,考查学生的空间想象能力,属于基础题.2、A【解题分析】试题分析:设P1(x1 , lnx1) , P2(x2 , -lnx2)(不妨设x考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.3、A【解题分析】试题分析:,,又点在第一象限,,点的极坐标为.故A正确.考点:1直角坐标与极坐标间的互化.【易错点睛】本题主要考查直角坐标与极坐标间的互化,属容易题.根据公式可将直角坐标与极坐标间互化,当根据求时一定要参考点所在象限,否则容易出现错误.4、A【解题分析】分析:直接利用排列组合的公式计算.详解:由题得.故答案为A.点睛:(1)本题主要考查排列组合的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)排列数公式:==(,∈,且).组合数公式:===(∈,,且)5、C【解题分析】
首先化简为,再求函数的性质.【题目详解】,是偶函数,故选C.【题目点拨】本题考查了三角函数的基本性质,属于简单题型.6、C【解题分析】本题考查服从标准正态分布的随机变量的概率计算.,选C.7、A【解题分析】
根据条件,令,代入中并取相同的正指数,可得的范围并可比较的大小;由对数函数的图像与性质可判断的范围,进而比较的大小.【题目详解】因为令则将式子变形可得,因为所以由对数函数的图像与性质可知综上可得故选:A.【题目点拨】本题考查了指数式与对数式大小比较,指数幂的运算性质应用,对数函数图像与性质应用,属于基础题.8、D【解题分析】
根据∥得到,解方程即得x的值.【题目详解】根据∥得到.故答案为D【题目点拨】(1)本题主要考查向量平行的坐标表示,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)如果=,=,则||的充要条件是.9、B【解题分析】根据椭圆和双曲线定义:又;故选B10、D【解题分析】
根据题意直接判断即可.【题目详解】根据“各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示”的原则,只有D符合,故选D.【题目点拨】本题主要考查合情推理,属于基础题型.11、B【解题分析】
依照立体几何相关知识,逐个判断各命题的真假。【题目详解】在①中,当圆心和圆上两点共线时,过圆心和圆上的两点有无数个平面,故①错误;在②中,若直线与平面平行,则与平面内的任意一条直线平行或异面,都没有公共点,故②正确;在③中,若直线上有无数个点不在平面内,则与相交或平行,故③错误;在④中,如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行或在这个平面内,故④错误;在⑤中,由线面垂直的性质定理得垂直于同一个平面的两条直线平行,故⑤正确.故选.12、C【解题分析】分析:由基本初等函数的导数公式可得.详解:,,,.故选C.点睛:本题考查基本初等函数的导数,牢记基本初等函数的导数公式是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、243【解题分析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.14、4【解题分析】分析:利用微积分基本定理直接求解即可.详解:即答案为4.点睛:本题考查微积分基本定理的应用,属基础题.15、【解题分析】
,所以,所以,故当时,的最小值是.考点:向量的模点评:本题考查向量的模的最值,解题的关键是能准确的表示出模的函数,再求解最值.16、【解题分析】
令,令,应用导数研究得出函数的单调性,从而分别求出的最小值和的最大值,从而求得的范围,得到结果.【题目详解】由令,则对恒成立,所以在上递减,所以,令,则对恒成立,所以在上递增,所以,所以,故的取值范围是.【题目点拨】该题考查的是有关参数的取值范围的问题,在解题的过程中,涉及到的知识点有构造新函数,应用导数研究函数的单调性,求得函数的最值,结合条件,求得结果,将题的条件转化是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)1-P(ξ=0)=1-6125=119125,(II)【解题分析】(1)可根据其对立事件来求:其对立事件为:没有一门课程取得优秀成绩.(2)P(ξ=0)=P(P(ξ=3)=P(建立关于p、q的方程,解方程组即可求解.(3)先算出a,b的值,然后利用期望公式求解即可.事件Ai表示“该生第i门课程取得优秀成绩”,iP(A1)=4(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P(ξ=0)=1-6(II)由题意知P(ξ=0)=P(P(ξ=3)=P(整理得pq=6125,p+q=1由p>q,可得p=3(III)由题意知a=P(ξ=1)=P(=45(1-p)(1-q)+b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=58Eξ=0×P(ξ=0)+1×P(ξ=1)+2P(ξ=2)+3P(ξ=3)=918、(1).(2).(3).【解题分析】
(1)首先将代入函数解析式,求出函数的导数,求出函数的切线的斜率,利用点斜式写出直线的方程,化简求得结果;(2)求出函数的导数,利用函数存在两个极值点,是方程的两个不等正根,韦达定理得到关系,将化为关于的函数关系式,利用导数求得结果;(3)将恒成立问题应用导数来研究,分类讨论,求得结果.【题目详解】(1)当时,,故,且,故所以函数在处的切线方程为(2)由,可得因为函数存在两个极值点,所以是方程的两个不等正根,即的两个不等正根为所以,即所以令,故,在上单调递增,所以故得取值范围是(3)据题意,对任意的实数恒成立,即对任意的实数恒成立.令,则①若,当时,,故符合题意;②若,(i)若,即,则,在上单调赠所以当时,,故符合题意;(ii)若,即,令,得(舍去),,当时,,在上单调减;当时,,在上单调递增,所以存在,使得,与题意矛盾,所以不符题意.③若,令,得当时,,在上单调增;当时,,在上单调减.首先证明:要证:,即要证:,只要证:因为,所以,故所以其次证明,当时,对任意的都成立令,则,故在上单调递增,所以,则所以当时,对任意的都成立所以当时,即,与题意矛盾,故不符题意,综上所述,实数的取值范围是.【题目点拨】该题考查的是有关应用导数研究函数的问题,在解题的过程中,涉及到的知识点有导数的几何意义,应用导数研究函数的极值点,应用导数研究不等式恒成立问题,涉及到的解题思想是分类讨论,注意思路清晰是解题的关键.19、(Ⅰ)0.2(Ⅱ)(ⅰ)(ⅱ)8【解题分析】
(Ⅰ)记10个水果中恰有2个不合格品的概率为,求得,利用导数即可求解函数的单调性,进而求得函数的最值.(Ⅱ)由(Ⅰ)知,(ⅰ)中,依题意知,,进而利用公式,即可求解;(ⅱ)如果对余下的水果作检验,得这一箱水果所需要的检验费为120元,列出相应的不等式,判定即可得到结论.【题目详解】(Ⅰ)记10个水果中恰有2个不合格品的概率为f(p),则,∴,由,得.且当时,;当时,.∴的最大值点.(Ⅱ)由(Ⅰ)知,(ⅰ)令Y表示余下的70个水果中的不合格数,依题意知,∴.(ⅱ)如果对余下的水果作检验,则这一箱水果所需要的检验费为120元,由,得,且,∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检测.【题目点拨】本题主要考查了独立重复试验的概率的应用,以及二项分布的应用,其中解答中认真审题,分析试验过程,根据对立重复试验求得事件的概率,以及正确利用分布列的性质求解上解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)抽象函数求值,采用令值的方法;(Ⅱ)根据(Ⅰ)求出对应的函数值,再根据函数单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代热风系统在医疗设备中的应用案例
- 现代口腔门诊的通风与空气质量设计
- 烘焙坊经营中的供应链优化
- 现代科技助力教育普及与均衡发展
- 环境友好的商业产品设计案例分享
- 国庆节儿童泥塑活动方案
- 10《雨和雪》 说课稿-2024-2025学年科学六年级上册人教鄂教版
- 2023三年级数学上册 五 解决问题的策略练习十(2)说课稿 苏教版
- 2024-2025学年高中历史 专题二 近代中国资本主义的曲折发展 2.2 民国时期民族工业的曲折发展说课稿1 人民版必修2
- 《11 剪纸花边》 说课稿-2024-2025学年科学一年级上册湘科版
- 近五年重庆中考物理试题及答案2023
- 2023年新高考物理广东卷试题真题及答案详解(精校版)
- 全科医医师的临床诊疗思维
- 旋挖钻机入场安全教育记录
- 第二章直线和圆的方程(单元测试卷)(原卷版)
- GB/T 16818-2008中、短程光电测距规范
- (七圣)七圣娘娘签诗
- 内镜下粘膜剥离术(ESD)护理要点及健康教育
- 新媒体文案创作与传播精品课件(完整版)
- 2022年全省百万城乡建设职工职业技能竞赛暨“华衍杯”江苏省第三届供水安全知识竞赛题库
- 广西北海LNG储罐保冷施工方案
评论
0/150
提交评论