版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省湛江市大成中学2024届数学高二下期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0<p1<p2<,则A.<,< B.<,>C.>,< D.>,>2.“”是双曲线的离心率为()A.充要条件 B.必要不充分条件 C.即不充分也不必要条件 D.充分不必要条件3.若变量x,y满足约束条件则目标函数的取值范围是A.[2,6] B.[2,5] C.[3,6] D.[3,5]4.已知为等差数列,,则()A.42 B.40 C.38 D.365.已知定义在R上的偶函数,在时,,若,则a的取值范围是()A.B.C.D.6.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.7.随着现代科技的不断发展,通过手机交易应用越来越广泛,其中某群体的每位成员使用微信支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用微信支付的人数,已知方差,,则期望()A.4 B.5 C.6 D.78.若点M为圆上的动点,则点M到双曲线渐近线的距离的最小值为()A. B. C. D.9.设A、B是非空集合,定义:且.已知,,则等于()A. B. C. D.10.在含有2件次品的6件产品中任取3件,恰有1件次品的概率为()A. B. C. D.11.下列说法:①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为⑤在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是()A.1 B.2 C.3 D.412.如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为()A.55 B.89 C.120 D.144二、填空题:本题共4小题,每小题5分,共20分。13.已知方程x2-2x+p=0的两个虚根为α、β,且α-β=4,则实数14.若是定义在上的可导函数,且,对恒成立.当时,有如下结论:①,②,③,④,其中一定成立的是____.15.直线被圆截得的弦长为________.16.设x,y满足约束条件,则的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据(1)求(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(附:,,,,其中,为样本平均值)18.(12分)设函数,.(Ⅰ)求的单调区间和极值;(Ⅱ)若关于的方程有3个不同实根,求实数的取值范围.19.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率进行了统计,结果如表:月份月份代码x123456y111316152021请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率如果不能,请说明理由.根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型,报废年限各不相同考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:报废年限车型1年2年3年4年总计A10304020100测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?参考数据:,,参考公式:相关系数回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.20.(12分)某市实施二手房新政一年多以来,为了了解新政对居民的影响,房屋管理部门调查了2018年6月至2019年6月期间购买二手房情况,首先随机抽取了其中的400名购房者,并对其购房面积(单位:平方米,)讲行了一次统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年6月至2019年6月期间当月在售二手房的均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年6月至2019年6月)(1)试估计该市市民的平均购房面积(同一组中的数据用该组区间的中点值为代表);(2)从该市2018年6月至2019年6月期间所有购买二手房的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的分布列与数学期望;(3)根据散点图选择和两个模型讲行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如表所示:0.0054590.0058860.006050请利用相关系数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年8月份的二手房购房均价(精确到0.001).参考数据:,,,,,参考公式:21.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.22.(10分)某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1:(1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?(2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为与的回归方程,求出与的回归方程.(结果精确到)(参考数据:,,,.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】∵,∴,∵,∴,故选A.【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列,组合与概率知识求出取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确.2、D【解题分析】
将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【题目详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【题目点拨】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.3、A【解题分析】
画出不等式组对应的可行域,将目标函数变形,画出目标函数对应的直线,由图得到当直线过A点时纵截距最大,z最大,当直线过(2,0)时纵截距最小,z最小.【题目详解】画出可行域,如图所示:将变形为,平移此直线,由图知当直线过A(2,2)时,z最大为6,当直线过(2,0)时,z最小为2,∴目标函数Z=x+2y的取值范围是[2,6]故选A.【题目点拨】本题考查画不等式组表示的平面区域:直线定边界,特殊点定区域结合图形求函数的最值,属于基础题.4、B【解题分析】分析:由已知结合等差数列的性质可求,然后由即可求解.详解:,,,,故选:B.点睛:(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.5、B【解题分析】试题分析:当时,,,∴函数在上为增函数,∵函数是定义在R上的偶函数,∴,∴,∴,即.考点:函数的单调性、奇偶性、解不等式.6、A【解题分析】
根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【题目详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【题目点拨】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.7、A【解题分析】
服从二项分布,由二项分布的方差公式计算出的可能值,再根据,确定的值,再利用均值计算公式计算的值.【题目详解】因为,所以或,又因为,则,解得,所以,则.故选:A.【题目点拨】二项分布的均值与方差计算公式:,.8、B【解题分析】
首先判断圆与渐近线的位置关系为相离,然后利用圆上一点到直线距离的最小值等于圆心到直线的距离减去圆的半径,由此即可得到答案。【题目详解】由题知,圆的圆心,半径.由双曲线的渐近线方程为,则圆心C到双曲线渐近线的距离为,故圆C与双曲线渐近线相离,圆C上动点M到双曲线渐近线的最小距离为,故选B.【题目点拨】本题考查点到直线的距离公式的运用,考查学生基本的计算能力,属于基础题,9、A【解题分析】求出集合中的函数的定义域得到:,即可化为或解得,即,则故选10、A【解题分析】
求出基本事件的总数和恰有1件次品包含的基本事件个数即可.【题目详解】在含有2件次品的6件产品中任取3件,基本事件的总数为:恰有1件次品包含的基本事件个数为在含有2件次品的6件产品中任取3件,恰有1件次品的概率为故选:A【题目点拨】本题考查的是古典概型及组合的知识,较简单.11、B【解题分析】
逐个分析,判断正误.①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;②设有一个回归方程,变量增加个单位时,平均减少个单位;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;④服从正态分布,则位于区域内的概率为;⑤在线性回归分析中,为的模型比为的模型拟合的效果好.【题目详解】①将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,错误;②设有一个回归方程,变量增加个单位时,平均减少个单位,正确;③线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,③错误;④服从正态分布,则位于区域内的概率为,④错误;⑤在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选B.【题目点拨】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题.12、A【解题分析】
根据杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,找出规律,即可求出数列的第10项,得到答案.【题目详解】由题意,可知,,故选A.【题目点拨】本题主要考查了归纳推理的应用,其中解答中读懂题意,理清前后项的关系,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、5【解题分析】
根据题意得出Δ<0,然后求出方程x2-2x+p=0的两个虚根,再利用复数的求模公式结合等式α-β=4可求出实数【题目详解】由题意可知,Δ=4-4p<0,得p>1.解方程x2-2x+p=0,即x-12=1-p,解得所以,α-β=2p-1故答案为5.【题目点拨】本题考查实系数方程虚根的求解,同时也考查了复数模长公式的应用,考查运算求解能力,属于中等题.14、①【解题分析】
构造函数,并且由其导函数的正负判断函数的单调性即可得解.【题目详解】由得即所以所以在和单调递增,因为,所以因为所以在不等式两边同时乘以,得①正确,②、③、④错误.【题目点拨】本题考查构造函数、由导函数的正负判断函数的单调性,属于难度题.15、4【解题分析】
将圆的方程化为标准方程,求出圆心坐标与半径,利用点到直线的距离公式,运用勾股定理即可求出截得的弦长【题目详解】由圆可得则圆心坐标为,半径圆心到直线的距离直线被圆截得的弦长为故答案为【题目点拨】本题主要考查了求直线被圆所截的弦长,由弦长公式,分别求出半径和圆心到直线的距离,然后运用勾股定理求出弦长16、【解题分析】
先画出可行域,根据表示可行域内的点到定点的距离的平方,即可求出最小值。【题目详解】作出不等式组表示的可行域为一个三角形区域(包括边界),表示可行域内的点到定点的距离的平方,由图可知,该距离的最小值为点到直线的距离,故.【题目点拨】本题考查线性规划,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)19.65【解题分析】分析:(1)根据最小二乘法,求得,进而得到,即可得到回归直线的方程;(2)由(1)中的回归直线方程,即可求解求解技前生产100吨甲产品的能耗,进而求得降低的生产能耗.详解:(1)由知:,所以由最小二乘法确定的回归方程的系数为:,因此,所求的线性回归方程为.(3)由1的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:(吨标准煤).点睛:本题主要考查了回归直线方程的求解以及回归直线方程的应用,其中利用最小二乘法准确计算和的值是解答的关键,着重考查了考生的推理与运算能力.18、(1)见解析;(2)【解题分析】
(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可求得函数的极值;(2)根据单调性与极值画出函数的大致图象,则关于的方程有三个不同的实根等价于直线与的图象有三个交点,结合图象从而可求出的范围.【题目详解】(1),令,得,或时,;当时,,的单调递增区间和,单调递减区间,当时,有极大值;当时,有极小值.(2)由(1)可知的图象的大致形状及走向如图所示,当时,直线与的图象有三个不同交点,即当时方程有三解.【题目点拨】单本题主要考查利用导数研究函数的调性与极值,以及函数的零点与函数图象交点的关系,属于中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.19、(1),2018年12月的市场占有率是;(2)选择釆购B款车型.【解题分析】
(1)求出相关系数,判断即可,求出回归方程的系数,求出回归方程代入的值,判断即可;
(2)分别求出的平均利润,判断即可.【题目详解】,故,故,故两变量之间有较强的相关关系,故可用线性回归模型拟合y与月份代码x之间的关系,,,故回归方程是,时,,即201
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球镀镍服务行业调研及趋势分析报告
- 2025-2030全球液密柔性非金属导管行业调研及趋势分析报告
- 2025-2030全球水电解用全氟磺酸膜行业调研及趋势分析报告
- 2025年全球及中国半自动焊接机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国癸二酸二酰肼行业头部企业市场占有率及排名调研报告
- 2025-2030全球小尺寸工业平板电脑行业调研及趋势分析报告
- 2025年全球及中国二氧化碳捕获机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国叉车机器人行业头部企业市场占有率及排名调研报告
- 2025-2030全球制药用乙酰氯行业调研及趋势分析报告
- 2025年全球及中国高压交流陆缆行业头部企业市场占有率及排名调研报告
- 三废环保管理培训
- 藏族唐卡艺术特色分析
- QFD模板含计算公式计分标准说明模板
- 医院护理培训课件:《早产儿姿势管理与摆位》
- 《论文的写作技巧》课件
- 00015-英语二自学教程-unit3
- 碳纳米管及其应用课件
- 病故军人证明书如何办理
- 企业合规管理实务
- 安宫牛黄丸课件
- GB/T 21117-2007磁致伸缩液位计
评论
0/150
提交评论