版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛市集团学校数学九上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列函数,当时,随着的增大而减小的是()A. B. C. D.2.抛物线的顶点坐标是()A. B. C. D.3.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误4.下列各点在反比例函数y=-图象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)5.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100° B.80° C.50° D.40°6.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是()A. B.1:3 C. D.1:27.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短 B.先变短后变长C.先变长后变短 D.逐渐变长8.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三个点一定可以作圆C.圆的切线垂直于圆的半径 D.每个三角形都有一个内切圆9.如图等边△ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s的速度向点C运动,点P沿A﹣B﹣C以2cm/s的速度也向点C运动,直到到达点C时停止运动,若△APQ的面积为S(cm2),点Q的运动时间为t(s),则下列最能反映S与t之间大致图象是()A. B.C. D.10.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)12.如图,是半圆的直径,四边形内接于圆,连接,,则_________度.13.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=-(k>0)图象上的两个点,则y1与y2的大小关系为_____.14.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.15.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.16.如图,正五边形内接于,为上一点,连接,则的度数为__________.17.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.18.一元二次方程的两实数根分别为,计算的值为__________.三、解答题(共66分)19.(10分)如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?20.(6分)已知抛物线y=x2+bx+c的图像过A(﹣1,0)、B(3,0)两点.求抛物线的解析式和顶点坐标.21.(6分)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,?(2)求四边形BQPC的面积S与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.22.(8分)计算题:(1)计算:sin45°+cos230°•tan60°﹣tan45°;(2)已知是锐角,,求.23.(8分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。请解决下列问题:(1)直接写出:购买这种产品________件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)24.(8分)用配方法解一元二次方程25.(10分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据,,)26.(10分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据各个选项中的函数解析式,可以判断出当x>0时,y随x的增大如何变化,从而可以解答本题.【详解】在y=2x+1中,当x>0时,y随x的增大而增大,故选项A不符合题意;在中,当x>0时,y随x的增大而增大,故选项B不符合题意;在中,当x>0时,y随x的增大而增大,故选项C不符合题意;在y=−x2−2x=−(x+1)2+1中,当x>0时,y随x的增大而减小,故选项D符合题意;故选:D.【点睛】本题考查一次函数的性质、反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,可以判断出当x>0时,y随x的增大如何变化.2、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.3、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.4、D【分析】将各选项点的横坐标代入,求出函数值,判断是否等于纵坐标即可.【详解】解:A.将x=3代入y=-中,解得y=-2,故(3,2)不在反比例函数y=-图象上,故A不符合题意;B.将x=2代入y=-中,解得y=-3,故(2,3)不在反比例函数y=-图象上,故B不符合题意;C.将x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函数y=-图象上,故C不符合题意;D.将x=-代入y=-中,解得y=2,故(-,2)在反比例函数y=-图象上,故D符合题意;故选:D.【点睛】此题考查的是判断一个点是否在反比例函数图象上,解决此题的关键是将点的横坐标代入,求出函数值,判断是否等于纵坐标即可.5、D【解析】试题分析:∵∠ACB和∠AOB是⊙O中同弧所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故选D.6、A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.【详解】解:根据题意,某人走的水平距离为:,∴坡度;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.7、B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.8、D【分析】根据与圆有关的基本概念依次分析各项即可判断.【详解】A.垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;
B.经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C.圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;
D.每个三角形都有一个内切圆,本选项正确,故选D.【点睛】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调.9、C【分析】根据等边三角形的性质可得,然后根据点P的位置分类讨论,分别求出S与t的函数关系式即可得出结论.【详解】解:∵△ABC为等边三角形∴∠A=∠C=60°,AB=BC=AC=4当点P在AB边运动时,根据题意可得AP=2t,AQ=t∴△APQ为直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,图象为开口向上的抛物线,当点P在BC边运动时,如下图,根据题意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,图象为开口向下的抛物线;故选:C.【点睛】此题考查的是根据动点判定函数的图象,掌握三角形面积的求法、二次函数的图象及性质和锐角三角函数是解决此题的关键.10、D【分析】用黄球的个数除以球的总数即为摸到黄球的概率.【详解】∵布袋中装有红、黄、白球分别为2、3、5个,共10个球,从袋中任意摸出一个球共有10种结果,其中出现黄球的情况有3种可能,∴得到黄球的概率是:.故选:D.【点睛】本题考查随机事件概率的求法:如果一个事件有m种可能,而且这些事件的可能性相同,其中事件A出现n种结果,那么事件A的概率P(A)=.二、填空题(每小题3分,共24分)11、【分析】利用扇形的面积公式计算即可.【详解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案为.【点睛】本题主要考查扇形的面积公式,求出扇形的圆心角是解题的关键.12、1【分析】首先根据圆周角定理求得∠ADB的度数,从而求得∠BAD的度数,然后利用圆内接四边形的性质求得未知角即可.【详解】解:∵AB是半圆O的直径,AD=BD,
∴∠ADB=90°,∠DAB=45°,
∵四边形ABCD内接于圆O,
∴∠BCD=180°-45°=1°,
故答案为:1.【点睛】考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是根据圆周角定理得到三角形ABD是等腰直角三角形,难度不大.13、y1<y1【分析】根据双曲线所在的象限,得出y随x的增大而增大,即可判断.【详解】解:∵k>0,∴﹣k<0,因此在每个象限内,y随x的增大而增大,∵﹣4<﹣1,∴y1<y1,故答案为:y1<y1.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数在各象限的增减性.14、1【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【详解】解:根据勾股定理得:斜边为=17,设内切圆半径为r,由面积法r=3(步),即直径为1步,
故答案为:1.考点:三角形的内切圆与内心.15、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.16、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.17、1.【分析】根据概率公式列方程计算即可.【详解】解:根据题意得,解得n=1,经检验:n=41是分式方程的解,故答案为:1.【点睛】题考查了概率公式的运用,理解用可能出现的结果数除以所有可能出现的结果数是解答本题的关键.18、-10【分析】首先根据一元二次方程根与系数的关系求出和,然后代入代数式即可得解.【详解】由已知,得∴∴故答案为-10.【点睛】此题主要考查根据一元二次方程根与系数的关系求代数式的值,熟练掌握,即可解题.三、解答题(共66分)19、变短了2.8米.【解析】试题分析:试题解析:根据AC∥BD∥OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.试题解析:如图:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴,即,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.20、y=x2-2x-3,顶点坐标为(1,-4).【解析】把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标.【详解】∵抛物线经过A(-1,0),B(3,0)两点,∴1-b+c=解得b=-2,c=-3,∴抛物线解析式为y=x2-2x-3.∵y=x2-2x-3=(x-1)2-4,∴抛物线的顶点坐标为(1,-4).【点睛】本题考查了待定系数法、二次函数的性质.21、(1);(2);(3)1或2;(4).【分析】(1)先根据可得,再根据相似三角形的判定可得,然后利用相似三角形的性质即可得;(2)如图(见解析),先利用正弦三角函数求出的长,再根据即可得与的函数关系式,然后根据运动路程和速度求出的取值范围即可得;(3)先根据面积比可求出S的值,从而可得一个关于t的一元二次方程,再解方程即可得;(4)如图(见解析),先根据相似三角形的判定与性质可得,从而可得,再根据线段的和差可得,然后根据垂直平分线的性质可得,最后在中,利用勾股定理即可得.【详解】(1)由题意得:,,,,DE垂直平分PQ,,即,在和中,,,,即,解得,故当时,;(2)如图,过点Q作于点F,在中,,,在中,,即,解得,则四边形BQPC的面积,,,点P到达点A所需时间为(秒),点Q到达点B所需时间为(秒),且当点P到达点A时停止运动,点Q也随之停止,,又当或时,不存在四边形BQPC,,故四边形BQPC的面积S与t的函数关系式;(3),,即,解得或,故当或时,四边形BQPC的面积与的面积比为;(4)如图,过点Q作于点H,连接CQ,,,,,即,解得,,垂直平分PQ,,在中,,即,解得.【点睛】本题考查了相似三角形的判定与性质、正弦三角函数、垂直平分线的性质、解一元二次方程等知识点,较难的是题(4),通过作辅助线,构造相似三角形和直角三角形是解题关键.22、(1);(2)1﹣【分析】(1)代入特殊锐角的三角函数值进行实数的运算便可;(2)由已知求出α的度数,再代入计算便可.【详解】解:原式(2)∵∴,∴∴,原式【点睛】本题考查的是利用特殊角的三角函数值进行运算,熟记特殊角的三角函数值是解题关键.23、(1)90;(2);(3)公司应将最低销售单价调整为2725元.【分析】(1)设购买产品x件,因为销售单间2600元,所以一定超过10件,根据题意列方程可解;(2)分10<x≤90,x>90两种情况讨论,由利润=(销售单价-成本单价)×件数列出函数关系;(3)由(2)的函数关系式,利用函数的性质求出最大值,并求出最大值时x的值,可确定销售单价。【详解】(1)设购买产品x件,根据题意列方程3000-5(x-10)=2600,解得x=90。所以购买这种产品90件时,销售单价恰好为2600元.(2)解:当10<x≤90时,y=[3000-5(x-10)-2400]·x=-5x2+650x,当x>90时,y=(2600-2400)·x=200x,即(3)解:因为要满足购买数量越多,所获利润越大,所以ν随x增大而增大函数y=200x是y随x增大而增大,而函数y=-5x2+650x=-5(x-65)2+21125,当10≤x≤65时,y随x增大而增大,当65<x≤90时,y随x增大而减小,若一次购买65件时,设置为最低售价,则可避免y随x增大而减小的情况发生,故当x=65时,设置最低售价为3000-5×(65-10)=2725(元),答:公司应将最低销售单价调整为2725元.【点睛】本题考察分段函数的实际应用,需要熟练掌握根据题意列一次函数与二次函数,并根据函数性质求最值。24、,【分析】根据配方法解一元二次方程的步骤,解方程即可.【详解】解:移项得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【点睛】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方”.25、GH的长为10m【分析】首先构造直角三角形,设DE=xm,则CE=(x+2)m,由三角函数得出AE和BE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的长【详解】解:延长CD交AH于点E,则CE⊥AH,如图所示.设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°=,tan67°=,∴AE=,BE=.∵AE﹣BE=AB,∴﹣=10,即=10,解得:x=8,∴DE=8m,∴GH=CE=CD+DE=2m+8m=10m.答:GH的长为10m.【点睛】本题考查解直角三角形的应用,解题关键在于作出点E26、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度学生城乡居民医疗保险政策宣传主题班会
- 2024届云南省曲靖市会泽县茚旺高级中学高三下学期3月模拟考试数学试题
- 春季助长推拿课件
- 2024年成都考客运资格证试题题库软件下载
- 2024年辽宁客运资格证考什么内容
- 2024年安徽道路客运输从业资格证仿真考试题库
- 2024年海南客运资格考试技巧答题
- 2024年山东客车驾驶员考试答案
- 2024年运城道路客运输从业资格证理论考题
- 2024年河南客运从业资格证考试试题及答案详解
- 税务师涉税服务相关法律真题2021年
- 第4课《公民的基本权利和义务》(课件)-部编版道德与法治六年级上册
- 合同审查之思维体系与实务技能
- 护理新颖课题
- 统编版(2024新版)道德与法治七年级上册13.1《在劳动中创造人生价值》教案
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 《路由与交换技术》课程教学大纲
- (最新整理)背景调查管理办法
- 红细胞无效输注、临床输血若干问题-兰炯采教授课件.ppt
- 英语B级语法总结
评论
0/150
提交评论