专题06分类加法计数原理与分步乘法计数原理(八大考点)_第1页
专题06分类加法计数原理与分步乘法计数原理(八大考点)_第2页
专题06分类加法计数原理与分步乘法计数原理(八大考点)_第3页
专题06分类加法计数原理与分步乘法计数原理(八大考点)_第4页
专题06分类加法计数原理与分步乘法计数原理(八大考点)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06分类加法计数原理与分步乘法计数原理思维导图核心考点聚焦考点一:分类加法计数原理考点二:分步乘法计数原理考点三:两个原理的综合应用考点四:组数问题考点五:占位模型中标准的选择考点六:涂色问题考点七:种植问题考点八:列举法知识点一:分类加法计数原理(也称加法原理)1、分类加法计数原理:完成一件事,有类办法.在第1类办法中有种不同方法,在第2类办法中有种不同的方法,……,在第类办法中有种不同方法,那么完成这件事共有种不同的方法.2、加法原理的特点是:①完成一件事有若干不同方法,这些方法可以分成n类;②用每一类中的每一种方法都可以完成这件事;③把每一类的方法数相加,就可以得到完成这件事的所有方法数.知识点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和.知识点二、分步乘法计数原理1、分步乘法计数原理“做一件事,完成它需要分成n个步骤”,就是说完成这件事的任何一种方法,都要分成n个步骤,要完成这件事必须并且只需连续完成这n个步骤后,这件事才算完成.2、乘法原理的特点:①完成一件事需要经过n个步骤,缺一不可;②完成每一步有若干种方法;③把每一步的方法数相乘,就可以得到完成这件事的所有方法数.知识点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积.知识点三、分类计数原理和分步计数原理的区别:1、分类计数原理和分步计数原理的区别:两个原理的区别在于一个和分类有关,一个和分步有关.完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一种方法都能单独完成这件事,则用加法原理;若完成某件事需分n个步骤,这n个步骤相互依存,具有连续性,当且仅当这n个步骤依次都完成后,这件事才算完成,则完成这件事的方法的种数需用乘法原理计算.1、利用两个基本原理解决具体问题时的思考程序:(1)首先明确要完成的事件是什么,条件有哪些?(2)然后考虑如何完成?主要有三种类型①分类或分步.②先分类,再在每一类里再分步.③先分步,再在每一步里再分类,等等.(3)最后考虑每一类或每一步的不同方法数是多少?考点剖析考点一:分类加法计数原理例1.(2024·广东梅州·高二校考阶段练习)从名女同学和名男同学中任选人主持本班的某次专题班会,则不同的选法种数为(

)A. B. C. D.【答案】C【解析】选人主持本班的某次专题班会可从名女同学任选一名,也可以从名男同学中任选名,由分类加法计数原理可知不同的选法种数为种.故选:C.例2.(2024·广东湛江·高三统考阶段练习)某企业面试环节准备编号为的四道试题,编号为的四名面试者分别回答其中的一道试题(每名面试者回答的试题互不相同),则每名面试者回答的试题的编号和自己的编号都不同的情况共有(

)A.9种 B.10种 C.11种 D.12种【答案】A【解析】用表示编号的面试者回答的试题为,其中,所以的全部可能情况有:,所以共有9种,故选:A例3.(2024·高二课时练习)在所有的两位数中,个位数字大于十位数字的两位数的个数是(

)A.18 B.36C.72 D.48【答案】B【解析】解法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成八类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有个.解法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有个.解法三:所有的两位数共有90个,其中个位数字等于十位数字的两位数为11,22,33,…,99,共9个;有10,20,30,…,90共9个两位数的个位数字与十位数字不能调换位置,则剩余的两位数有个.在这72个两位数中,每一个个位数字(a)小于十位数字(b)的两位数都有一个十位数字(a)小于个位数字(b)的两位数与之对应,故满足条件的两位数的个数是.故选:B.变式1.(2024·高二单元测试)如图所示,在间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,今发现之间电路不通,则焊接点脱落的不同情况有()A.9种 B.11种 C.13种 D.15种【答案】C【解析】若之间电路不通,按焊接点脱落的个数分成4类:脱落1个,有1,4,共2种;脱落2个,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种;脱落3个,有(1,2,3),(1,2,4),(1,3,4),(2,3,4),共4种;脱落4个,有(1,2,3,4),共1种,由分类加法计数原理,焊接点脱落的情况共有种.故选:C考点二:分步乘法计数原理例4.(2024·山东德州·高二校考阶段练习)为提高学生的身体素质,某校开设了游泳、武术和篮球课程,甲、乙、丙、丁4位同学每人从中任选门课程参加,则不同的选法共有(

)A.种 B.种 C.种 D.种【答案】C【解析】甲、乙、丙、丁4位同学每人都有种不同的选法,根据分步乘法计数原理可知,不同的选法共有种.故选:C.例5.(2024·湖南长沙·高二长沙麓山国际实验学校校联考阶段练习)用这五个数字,可以组成没有重复数字的三位数的个数为(

)A.18 B.24 C.30 D.48【答案】D【解析】由题意可知,首位数字有4种选择,则中间的数位有4种选择,末尾数字有3种选择.由分步乘法计数原理可知,可以组成没有重复数字的三位数的个数.故选:.例6.(2024·河南·高二河南大学附属中学校考)把3个不同的小球放入4个不同的盒子中,共有(

)种方法.A.81 B.64 C.12 D.7【答案】B【解析】对于第一个小球有4种不同的放法,第二个小球也有4种不同的放法,第三个小球也有4种不同的放法,即每个小球都有4种可能的放法,根据分步计数原理知不同放法共有(种).故选:B.变式2.(2024·河南周口·高二校联考)360的不同正因数的个数为(

)A.24 B.36 C.48 D.42【答案】A【解析】因为,所以360有个不同的正因数.故选:A考点三:两个原理的综合应用例7.(2024·辽宁辽阳·高二统考期末)同一个宿舍的8名同学被邀请去看电影,其中甲和乙两名同学要么都去,要么都不去,丙同学不去,其他人根据个人情况可选择去,也可选择不去,则不同的去法有(

)A.32种 B.128种 C.64种 D.256种【答案】C【解析】若甲、乙都去,剩下的5人每个人都可以选择去或不去,有种去法;若甲、乙都不去,剩下的5人每个人都可以选择去或不去,有种去法.故一共有种去法.故选:C.例8.(2024·山西·校联考模拟预测)如图,有8个不同颜色的正方形盒子组成的调味盒,现将编号为的4个盖子盖上(一个盖子配套一个盒子),要求A,B不在同一行也不在同一列,C,D也是此要求.那么不同的盖法总数为(

)12345678A.224 B.336 C.448 D.576【答案】B【解析】第一步:先盖,有种方法;第二步:再盖.①若C与A或B在同一列,则有2种盖法,D就有3种盖法,共种方法;②若C与A或B不在同一列,则有4种盖法,D就有2种盖法,共种方法.综上所述,满足要求的有种方法.故选:B.例9.(2024·辽宁葫芦岛·高二统考期末)为了备战下一届排球世锦赛,中国国家队甲、乙、丙、丁四人练习传球,第1次由甲传给乙、丙、丁三人中的任意一人,第2次由持球者传给另外三人中的任意一人,往后依次类推,经过4次传球,球仍回到甲手,则传法总数为(

)A.30 B.24 C.21 D.12【答案】C【解析】由题意,四人练习传球,第1次由甲传给乙、丙、丁三人中的任意一人,第2次由持球者传给另外三人中的任意一人,经过4次传球,球仍回到甲手,∴第1次传球有3种方法,第2次传球分成“在甲手中”和“不在甲手中”两类方法,第3次传球,球也不一定在甲手中;第4次传球只能在甲手中;∴当第2次传球后球在甲手中时,则第3次传球可能为丙或乙或丁,共3种方法;当第2次传球后球不在甲手中时,有2种方法,则第3次传球有2种方法.∴经过4次传球,球仍回到甲的传法总数为:,∴球仍回到甲的传法总数为21种,故选:C.变式3.(2024·高二单元测试)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,如图,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈为阳数,黑点为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有(

)A.120 B.90 C.48 D.12【答案】A【解析】根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8,第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为,,,,,共6种选择,根据分步乘法计数原理,这样的四位数共有(个).故选:A.考点四:组数问题例10.(2024·江苏常州·高二统考)我们把各位数字之和为6的四位数称为“四位合六数”(如1203、1005均是四位合六数),则在“四位合六数”中首位为1的不同的“四位合六数”共有个.【答案】21【解析】由题知后三位数字之和为5,当一个位置为5时有005,050,500,共3个;当两个位置和为5时有014,041,410,401,140,104,023,032,302,320,203,230,共12个;当三个位置和为5时有113,131,311,122,212,221,共6个;所以一共有21个.故答案为:21.例11.(2024·浙江台州·高二台州市书生中学校联考)如果一个三位正整数如“”满足,且,则称这样的三位数为凹数(如201,325等),那么由数字0,1,2,3,4,5能组成个无重复数字的凹数.【答案】40【解析】当首位为1,中间位置为0有4个凹数;当首位为2,中间位置为0有4个凹数;中间位置为1有3个凹数;当首位为3,中间位置为0有4个凹数;中间位置为1有3个凹数;中间位置为2有2个凹数;当首位为4,中间位置为0有4个凹数;中间位置为1有3个凹数;中间位置为2有2个凹数;中间位置为3有1个凹数;当首位为5,中间位置为0有4个凹数;中间位置为1有3个凹数;中间位置为2有2个凹数;中间位置为3有1个凹数;综上,共有40个无重复数字的凹数.故答案为:40例12.(2024·河北石家庄·高二校考阶段练习)在一个三位数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”,“546”为“驼峰数”.由数字1,2,3,4可构成无重复数字的“驼峰数”有个,其中偶数有个.【答案】85【解析】十位上的数为1时,有213,214,312,314,412,413,共6个;十位上的数为2时,有324,423,共2个;所以共有6+2=8个;偶数为214,312,314,412,324,共5个.答案:8,5变式4.(2024·全国·模拟预测)由数字组成没有重复数字的三位数,则能被5整除的三位数共有个.【答案】【解析】能被整除的三位数说明末尾数字是或当末尾数字是时,百位数字除了有种不同的选法,十位有种不同的选法,根据分步乘法原理一共有种方法;当末尾数字是时,百位数字有种不同的选法,十位有种不同的选法,根据分步乘法原理一共有种方法;则一共有种故答案为:考点五:占位模型中标准的选择例13.(2024·广东·清远市博爱学校高二阶段练习)3名志愿者,每人从4个不同的岗位中选择1个,则不同的选择方法共有(

)A.12种 B.64种 C.81种 D.24种【答案】B【解析】每个人都有4种选择,故不同的选择方法共有种.故选:B例14.(2024·福建福州·高二期末)6名同学参加3个课外知识讲座,每名同学必须且只能随机选择其中的一个,不同的选法种数是(

)A.20 B. C. D.120【答案】B【解析】依题意,每位同学都有3种选法,所以不同的选法种数是.故选:B例15.(2024·广东广州·高二期末)3名同学报名参加足球队、篮球队,每名同学限报其中的一个运动队,则不同的报名方法的种数是(

)A.8 B.6 C.5 D.9【答案】A【解析】依题意,每名同学报名方法数是2,所以3名同学不同的报名方法的种数是.故选:A变式5.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同报名方法有(

)A.10种 B.20种 C.25种 D.32种【答案】D【解析】由题,每个同学有2种选择,故不同报名方式为,故选:D考点六:涂色问题例16.(2024·江西新余·高二校考阶段练习)如图,用4种不同的颜色给矩形,,,涂色,要求相邻的矩形涂不同的颜色,则不同的涂色方法共有(

)A.12种 B.24种 C.48种 D.72种【答案】D【解析】先涂C区域有4种涂法,再涂D区域3种涂法,涂A区域3种涂法,涂B区域2种涂法,由分步乘法计数原理,共有种涂法.故选:D.例17.(2024·江苏宿迁·高二统考)用6种不同的颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,则不同的涂色方法有(

)A.240 B.360 C.480 D.600【答案】C【解析】将区域标号,如下图所示:因为②③④两两相邻,依次用不同的颜色涂色,则有种不同的涂色方法,若①与④的颜色相同,则有1种不同的涂色方法;若①与④的颜色不相同,则有3种不同的涂色方法;所以共有种不同的涂色方法.故选:C.例18.(2024·四川德阳·高二德阳五中校考阶段练习)某小区有5个区域要种上鲜花(如图),现有四种不同品种的鲜花可供选择,每个区域只能种一种鲜花,要求相邻区域不能种同一种鲜花,则符合条件的方案有()种A.36 B.48 C.54 D.72【答案】D【解析】如图所示,依顺序,A区域可种4种颜色,B区域可种3种颜色,C区域可种2种颜色,①D区域若与B区域同色,则E有两种颜色可选;②D区域若不与B区域同色,则只有1种颜色可选,E也只有1种颜色可选,故有种方案.故选:D变式6.(2024·江苏南京·高二南京师大附中校考)如图,用4种不同的颜色给图中四块区域涂色,若相邻的区域不能涂同一种颜色,则不同的涂法共有(

)A. B. C. D.【答案】C【解析】区域同色的方法数为区域不同色的方法数为,总的方法数为.故选:C.考点七:种植问题例19.(2024·河北石家庄·高二石家庄市第四十一中学校考)在如图所示的四个区域中,有5种不同的花卉可选,每个区域只能种植一种花卉,且相邻区域花卉不同,则不同的种植方法共有种(用数字作答)【答案】240【解析】由分步乘法计数原理得种,故答案为:240.例20.(2024·安徽六安·高二校考)如图一个正方形花圃被分成5份.若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,则不同的种植方法有种【答案】72【解析】先对部分种植,有4种不同的种植方法;再对部分种植,又3种不同的种植方法;对部分种植进行分类:①若与相同,有2种不同的种植方法,有2种不同的种植方法,共有(种),②若与不同,有2种不同的种植方法,有1种不同的种植方法,有1种不同的种植方法,共有(种),综上所述,共有72种种植方法.故答案为:72.例21.(2024·吉林·高二开学考试).将3种作物种植在如图5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有种.(以数字做答)【答案】42【解析】变式7.(2024·江苏淮安·高二统考期末)某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有种.(用数字作答)【答案】180【解析】先在1中种植,有5种不同的种植方法,再在2中种植,有4种不同的种植方法,再在3中种植,有3种不同的种植方法,最后在4中种植,有3种不同的种植方法,所以不同的种植方案共有(种).故答案为:180.考点八:列举法例22.(2024·北京·高二北大附中校考期末)某公司有家直营店,现需将箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有(

)A.种 B.种 C.种 D.种【答案】D【解析】箱货物的分配方法和最大利润分别为:;;;;;;,此时;,此时;,此时或;综上,该公司获得最大总利润的运送方式有种.故选:D.例23.(2024·河北邯郸·高二校联考)有序数对满足,且使关于的方程有实数解,则这样的有序数对的个数为(

)A.15 B.14 C.13 D.10【答案】A【解析】(1)当时,有为实根,则有4种可能;(2)当时,方程有实根,所以,所以.当时,有4种.当时,有4种.当时,有3种.所以,有序数对的个数为.故选:A.例24.(2024·河南·马店第一高级中学模拟预测)如图,某水果店门前用3根绳子挂了6串香蕉,从左往右的串数依次为1,2,3.到了晚上,水果店老板要收摊了,假设每次只取1串(挂在一列的只能先收下面的),则将这些香蕉都取完的不同取法种数是(

)A.144 B.96 C.72 D.60【答案】D【解析】将6串香蕉编号为1,2,3,4,5,6.把“2,3,4,5,6”取完,方法为23456,24356,24536,24563,42356,42536,42563,45263,45623,45236,共10种,再把1插入其中,每个有6种插法.共有60种方法,故选:D.变式8.元旦来临之际,某寝室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡不同的分配方式有(

)A.6种 B.9种 C.11种 D.23种【答案】B【解析】解法1:设四人A、B、C、D写的贺卡分别是a、b、c、d,当A拿贺卡b,则B可拿a、c、d中的任何一张,即B拿a,C拿d,D拿c,或B拿c,D拿a,C拿d,或B拿d,C拿a,D拿c,所以A拿b时有三种不同的分配方式;同理,A拿c,d时也各有三种不同的分配方式,由分类加法计数原理,四张贺卡共有(种)分配方式;解法2:让四人A、B、C、D依次拿一张别人送出的贺卡,如果A先拿,有3种,此时被A拿走的那张贺卡的人也有3种不同的取法,接下来,剩下的两个人都各只有1种取法,由分步乘法计数原理,四张贺卡不同的分配方式有(种).故选:B.过关检测一、单选题1.(2024·甘肃白银·高二甘肃省靖远县第一中学校考期末)踢球时甲、乙、丙三人互相传递,由甲开始传球,经过3次传递后,球又被传回到甲,则不同的传递方式共有(

)A.6种 B.8种 C.2种 D.4种【答案】C【解析】经过3次传到甲,必定经过2次传到乙或丙,且经过2次传到乙或丙的方式种数相等,经过2次传到乙有“甲一丙一乙”1种方式,经过2次传到丙有“甲一乙一丙”1种方式,所以经过3次传到甲共有2种传递方式.故选:C.2.(2024·重庆·高三重庆南开中学校考阶段练习)已知集合,且,用组成一个三位数,这个三位数满足“十位上的数字比其它两个数位上的数字都大”,则这样的三位数的个数为(

)A.14 B.17 C.20 D.23【答案】C【解析】集合,且,则这个三位数满足“十位上的数字比其它两个数位上的数字都大”包含以下三种情况:①十位数是,则百位数可以是中的一个数,个位数可以是中的一个数,即个;②十位数是,则百位数可以是中的一个数,个位数可以是中的一个数,即个;③十位数是,则百位数只能是,个位数可以是中的一个数,即个;综上,符合条件的共有个.故选:C.3.(2024·新疆乌鲁木齐·高二乌鲁木齐市第六十八中学校考)甲、乙、丙、丁四位同学决定去黄鹤楼、东湖、汉口江滩游玩,每人只能去一个地方,则不同游览方案的种数为(

)A. B. C. D.【答案】B【解析】甲、乙、丙、丁四位同学决定去黄鹤楼、东湖、汉口江滩游玩,每人只能去一个地方,每个人都有三种选择,则不同的游览方案种数为种.故选:B.4.(2024·山东临沂·高二校考阶段练习)集合,,,,5,6,,从两个集合中各取一个元素作为点的坐标,则这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是(

)A.2 B.4 C.5 D.6【答案】D【解析】第二象限的横坐标是负数,纵坐标是正数.若集合提供横坐标,集合提供纵坐标,则有,若集合提供纵坐标,集合提供横坐标,则有,合计,即这样的坐标在平面直角坐标系中表示第二象限内不同的点的个数是6个,故选:D.5.(2024·新疆伊犁·高二统考)若3名学生报名参加天文、计算机、文学、美术这4个兴趣小组,每人选1组,则不同的报名方式有(

)A.12种 B.24种 C.64种 D.81种【答案】C【解析】由题意可得每个人都有4种选法,则由分步乘法原理可得不同的报名方式有种,故选:C6.(2024·浙江温州·高二校联考)2022年北京冬奥会的顺利召开,激发了大家对冰雪运动的兴趣.若甲,乙,丙三人在自由式滑雪、花样滑冰、冰壶和跳台滑雪这四项运动中任选一项进行体验,则不同的选法共有(

)A.12种 B.24种 C.64种 D.81种【答案】C【解析】由题意,可知每一人都可在四项运动中选一项,即每人都有四种选法,可分三步完成,根据分步乘法原理,不同的选法共有种.故选:C.7.(2024·浙江湖州·高二校联考)将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为(

)A.90 B.135 C.270 D.360【答案】B【解析】在6个盒子中任选2个,放入与其编号相同的小球,有种,剩下的4个盒子的编号与放入的小球编号不同,假设这4个盒子的编号为3,4,5,6,则3号小球可以放进4,5,6号盒子,有3种选法,剩下的3个小球放进剩下的3个盒子,有3种选法,所以不同的放法种数为种选法.故选:B.8.(2024·全国·高三专题练习)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18 C.24 D.36【答案】D【解析】正方体的两个顶点确定的直线有棱、面对角线、体对角线,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有(个);对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个,不存在四个顶点确定的平面与体对角线垂直,所以正方体中“正交线面对”共有(个).故选:D二、多选题9.(2024·甘肃白银·高二校考期末)用种不同的颜色涂图中的矩形,要求相邻的矩形涂色不同,不同的涂色方法总种数记为,则(

)A. B.C. D.【答案】AD【解析】当时,分四步:第一步,涂处,有3种涂色方案;第二步,涂处,有2种涂色方案;第三步,涂处,有2种涂色方案;第四步,涂处,有1种涂色方案.所以不同的涂色方法共种数为,所以,故A正确;当时,分四步:第一步,涂处,有4种涂色方案;第二步,涂处,有3种涂色方案;第三步,涂处,有3种涂色方案;第四步,涂处,有2种涂色方案.所以不同的涂色方法共种数为,所以,故B错误;当时,分四步:第一步,涂处,有5种涂色方案;第二步,涂处,有4种涂色方案;第三步,涂处,有4种涂色方案;第四步,涂处,有3种涂色方案.所以不同的涂色方法共种数为,所以,故C错误;当时,分四步:第一步,涂处,有6种涂色方案;第二步,涂处,有5种涂色方案;第三步,涂处,有5种涂色方案;第四步,涂处,有4种涂色方案.所以不同的涂色方法共种数为,所以,故D正确.故选:AD.10.(2024·辽宁沈阳·高二校考阶段练习)下列结论正确的是()A.在分类加法计数原理中,两类不同方案中的方法可以相同B.在分类加法计数原理中,每类方案中的方法都能直接完成这件事C.在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成D.在分步乘法计数原理中,每个步骤中完成这个步骤的方法可以相同【答案】BC【解析】对于A,在分类加法计数原理中,两类不同方案中的方法互不相同,故A错误;对于B,在分类加法计数原理中,每类方案中的方法都能直接完成这件事,故B正确;对于C,在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成,故C正确;对于D,在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的,故D错误.故选:BC.11.(2024·高二课时练习)(多选)已知x∈{2,3},y∈{-4,8},则x·y的值可取(

)A.-8 B.-12C.11 D.24【答案】ABD【解析】分两步:第一步在集合中{2,3}中任取一个值,有2种不同取法,第二步在集合{-4,8}中任取一个值,有2种不同的取法,故x·y可表示2×2=4个不同的值.即2×(-4)=-8,2×8=16,3×(-4)=-12,3×8=24,故选:ABD.12.(2024·吉林长春·高二校考阶段练习)高二年级安排甲、乙、丙三位同学到A,B,C,D,E五个社区进行暑期社会实践活动,每位同学只能选择一个社区进行活动,且多个同学可以选择同一个社区进行活动,下列说法正确的有(

)A.所有可能的方法有种B.如果社区A必须有同学选择,则不同的安排方法有61种C.如果同学甲必须选择社区A,则不同的安排方法有25种D.如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种【答案】BC【解析】对于选项A,安排甲、乙、丙三位同学到A,B,C,D,E五个社区进行暑期社会实践活动,每位同学只能选择一个社区进行活动,且多个同学可以选择同一个社区进行活动,故有种选择方案,错误;对于选项B,如果社区A必须有同学选择,则不同的安排方法有(种),正确;对于选项C:如果同学甲必须选择社区A,则不同的安排方法有(种),正确;对于选项D:如果甲、乙两名同学必须在同一个社区,再分为丙与甲、乙两名同学在一起和不在一起两种情况,则不同的安排方法共有(种),错误.故选:BC三、填空题13.(2024·甘肃白银·高二校考期末)星期二下午的3节课排物理、化学和自习课各一节,要求第一节不排自习课,那么不同的排课方法种数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论