




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省临沂市河东区九年级数学第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.802.如图,以点为位似中心,将放大得到.若,则与的位似比为().A. B. C. D.3.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A.正方体B.长方体C.三棱柱D.圆锥4.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.325.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④ B.①②③ C.①②④ D.②③④6.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0 B.-3a+c<0C.b2-4ac≥0 D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c7.若是方程的两根,则的值是()A. B. C. D.8.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a< B.≤a<C.a≤或a> D.a≤﹣1或a≥9.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=36010.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为()A.40° B.60° C.70° D.80°11.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是()A. B.C. D.12.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)二、填空题(每题4分,共24分)13.已知非负数a、b、c满足a+b=2,,,则d的取值范围为____.14.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.15.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.16.为了对1000件某品牌衬衣进行抽检,统计合格衬衣的件数,在相同条件下,经过大量的重复抽检,发现一件合格衬衣的频率稳定在常数0.98附近,由此可估计这1000件中不合格的衬衣约为__________件.17.分解因式:.18.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.三、解答题(共78分)19.(8分)根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;xL﹣3﹣2﹣1012345LyL30﹣1030﹣103L由上表可知,a=,b=;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.20.(8分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.21.(8分)某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?22.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根.③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.23.(10分)如图,的半径为,是的直径,是上一点,连接、.为劣弧的中点,过点作,垂足为,交于点,,交的延长线于点.(1)求证:是的切线;(2)连接,若,如图2.①求的长;②图中阴影部分的面积等于_________.24.(10分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C(1)求证:∠CBP=∠ADB(2)若OA=2,AB=1,求线段BP的长.25.(12分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.26.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞201.6第2次捕捞152.0第3次捕捞151.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
参考答案一、选择题(每题4分,共48分)1、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.2、A【解析】以点为个位中心,将放大得到,,可得,因此与的位似比为,故选A.3、C【解析】解:只有三棱柱的俯视图为三角形,故选C.4、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.5、B【分析】根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.【详解】∵∠DBC=45°,DE⊥BC∴∠BDE=45°,∴BE=DE由勾股定理得,DB=BE,∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②③对于④无法证明.故选:B.【点睛】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.6、B【解析】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选B.7、D【解析】试题分析:x1+x2=-=6,故选D考点:根与系数的关系8、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax1-x+1.观察图象可知当a<0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a>0时,x=1时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选A.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.9、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.10、D【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠O=2∠A,进而可得答案.【详解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°−70°×2=40°,
∵点O是△ABC的外心,
∴∠BOC=40°×2=80°,
故选:D.【点睛】此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.11、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.12、D【分析】由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.【详解】∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(﹣1,﹣3)符合.故选D.【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.二、填空题(每题4分,共24分)13、5≤d≤1.【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可.【详解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非负数,∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴对称轴为直线a=0,∴a=0时,最小值=5,a=2时,最大值=22+5=1,∴5≤d≤1.故答案为:5≤d≤1.【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式.14、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.15、2.【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,点M是OP的中点,∴;故答案为:2.【点睛】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.16、1【分析】用总件数乘以不合格衬衣的频率即可得出答案.【详解】这1000件中不合格的衬衣约为:(件);
故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.17、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.18、x1=﹣1或x2=1.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.【详解】解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点横坐标为1﹣(1﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=1时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=1.故答案为:x1=﹣1或x2=1.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.三、解答题(共78分)19、(1)﹣1,﹣1;(1)详见解析;(3)函数关于x=1对称;(4)0<m<1.【分析】(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(1)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.【详解】解:(1)将点(0,0)、(1,3)代入函数y=x1+ax﹣4|x+b|+4(b<0),得,解得a=﹣1,b=﹣1,故答案为﹣1,﹣1;(1)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)∵方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解∴二次函数y=x1+ax﹣4|x+b|+4的图像与一次函数y=x+m至少有三个交点,根据一次函数图像的变化趋势,∴当0<m<1时,方程x1+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0<m<1.【点睛】本题考查了二次函数的综合应用,熟练掌握并灵活运用是解题的关键.20、(1)30,6;(2)①;②≤t≤.【分析】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OF=QC可求出t的值;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,证△QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QP=QH可求出t的值;同理,如图2﹣2,当⊙O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围.【详解】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,∴S△PDQ=(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键.21、(1)20%(2)34.56【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书20(1+x)2万册,即可列方程求解;(2)利用求得的百分率,进一步求得2017年年底图书馆存图书数量即可.试题解析:(1)设年平均增长率为x,根据题意得20(1+x)2=28.8,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该图书馆这两年图书册数的年平均增长率为20%;(2)28.8(1+0.2)=34.56(万册)答:预测2016年年底图书馆存图书34.56万册.考点:一元二次方程的应用22、(1)1;(2)作图见解析;(3)①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4)3,3,2,﹣1<a<1.【解析】(1)把x=-2代入y=x2-2|x|得y=1,
即m=1,
故答案为:1;
(2)如图所示;(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;
(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=1有3个实数根;
②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,
∴x2-2|x|=2有2个实数根;
③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,
∴a的取值范围是-1<a<1,
故答案为:3,3,2,-1<a<1.23、(1)见解析;(2)①,②.【分析】(1)连接OC,利用等腰三角形三线合一的性质证得OC⊥BF,再根据CG∥FB即可证得结论;(2)①根据已知条件易证得是等边三角形,利用三角函数可求得的长,根据三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国谷氨酸项目创业计划书
- 2025年自动化生产线成套装备项目评估报告
- 2025年量部件项目投资可行性研究分析报告
- 安全教育饮食安全教学课件
- 蚁族家政公司运营计划书
- 2025年白药项目投资可行性研究分析报告
- 集市维护计划方案
- 年产6万吨颗粒饲料生产线融资投资立项项目可行性研究报告(非常详细)
- 天天刷牙健康课件小班
- 企业创新的四大基本类型
- 公司SWOT分析表模板
- 学校青春期性教育系列- 《保护青春期安全》
- 新媒体视频节目制作 课件 学习领域1 新闻短视频制作
- 秦始皇帝陵的物探考古调查863计划秦始皇陵物探考古进展情况的报告
- (完整)中医症候积分量表
- 高效液相色谱质谱联用技术在药物分析中的应用
- 透析患者贫血的护理查房
- 投标文件封面封皮模板
- 双块式轨枕、道床板钢筋运输及线间存放作业指导书
- JG244-2009 混凝土试验用搅拌机
- 珠海市公安局金湾分局等单位招聘公安辅警考试题库2023
评论
0/150
提交评论