船舶主机说明书L70MCC_第1页
船舶主机说明书L70MCC_第2页
船舶主机说明书L70MCC_第3页
船舶主机说明书L70MCC_第4页
船舶主机说明书L70MCC_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7 VibrationAspects

Thevibrationcharacteristicsofthetwo-strokelowspeeddieselenginescanforpracticalpurposesbe,splitupintofourcategories,andiftheadequatecountermeasuresareconsideredfromtheearlyprojectstage,theinfluenceoftheexcitation

Thenaturalfrequencyofthehulldependsonthehull’srigidityanddistributionofmasses,whereasthevibrationlevelatresonancedependsmainlyonthemagnitudeoftheexternalmomentandtheen-gine’spositioninrelationtothevibrationnodesof

sourcescanbeminimisedorfullycompensated.

Ingeneral,themarinedieselenginemayinfluencethehullwiththefollowing:

ExternalunbalancedmomentsThesecanbeclassifiedasunbalanced1stand2ndorderex-ternalmoments,whichneedtobeconsideredonlyforcertaincylindernumbers

Guideforcemoments

Axialvibrationsintheshaftsystem

Torsionalvibrationsintheshaftsystem.

TheexternalunbalancedmomentsandguideforcemomentsareillustratedinFig.7.01.

Inthefollowing,abriefdescriptionisgivenoftheiroriginandofthepropercountermeasuresneededtorenderthemharmless.

Externalunbalancedmoments

Theinertiaforcesoriginatingfromtheunbalancedrotatingandreciprocatingmassesoftheenginecreateunbalancedexternalmomentsalthoughtheexternalforcesarezero.

Ofthesemoments,the1storder(onecycleperrevo-

theship.

A–

B–

C–

D–

1st2nd

1st

C C

A

B

D

CombustionpressureGuideforce

StayboltforceMainbearingforce

ordermomentvertical1cycle/revordermomentVertical2cycle/rev

ordermoment,horizontal1cycle/rev.

lution)andthe2ndorder(twocyclesperrevolution)needtobeconsideredforengineswithalownumberofcylinders.On7-cylinderengines,alsothe4thorderexternalmomentmayhavetobeexamined.Theiner-tiaforcesonengineswithmorethan6cylinderstend,moreorless,toneutralisethemselves.

Countermeasureshavetobetakenifhullresonanceoccursintheoperatingspeedrange,andifthevi-brationlevelleadstohigheraccelerationsand/orvelocitiesthantheguidancevaluesgivenbyinter-nationalstandardsorrecommendations(forin-stancerelatedtospecialagreementbetweenship-ownerandshipyard).

Guideforcemoment,

HtransverseZcycles/rev.Zis1or2timesnumberofcylinder

Guideforcemoment,

XtransverseZcycles/rev.Z=1,2...12

1780682-8.0

Fig.7.01:Externalunbalancedmomentsandguideforcemoments

1stordermomentson4-cylinderengines

1stordermomentsactinbothverticalandhorizon-taldirection.Forourtwo-strokeengineswithstan-dardbalancingtheseareofthesamemagnitudes.

Forengineswithfivecylindersormore,the1stordermomentisrarelyofanysignificancetotheship.Itcan,however,beofadisturbingmagnitudeinfour-cylinderengines.

Resonancewitha1stordermomentmayoccurforhullvibrationswith2and/or3nodes,seeFig.7.02.Thisresonancecanbecalculatedwithreasonableaccuracy,andthecalculationwillshowwhetheracompensatorisnecessaryornotonfour-cylinderengines.

Aresonancewiththeverticalmomentforthe2nodehullvibrationcanoftenbecritical,whereasthereso-nancewiththehorizontalmomentoccursatahigherspeedthanthenominalbecauseofthehighernatu-ralfrequencyofhorizontalhullvibrations.

Adjustablecounterweights

Aft

Fixedcounterweights

counterweights

Adjustable

Fore

Asstandard,four-cylinderenginesarefittedwithadjustablecounterweights,asillustratedinFig.

7.03.Thesecanreducetheverticalmomenttoanin-significantvalue(although,increasingcorrespond-inglythehorizontalmoment),sothisresonanceiseasilydealtwith.Asolutionwithzerohorizontalmo-mentisalsoavailable.

Fig.7.03:Adjustablecounterweights:431151

Fixedcounterweights

1781678-7.0

1780684-1.0

Fig.7.02:Statisticsoftankersandbulkcarrierswith4cylinderMCengines

1780676-9.0 1780692-4.0

Fig.7.04:1stordermomentcompensator Fig.7.05:Statisticsofverticalhullvibrationsintankers

andbulkcarriers

Inrarecases,wherethe1stordermomentwillcauseresonancewithboththeverticalandthehori-zontalhullvibrationmodeinthenormalspeedrangeoftheengine,a1stordercompensator,asshowninFig.7.04,canbeintroduced(asanoption:431156),inthechaintightenerwheel,reducingthe1stordermomenttoaharmlessvalue.Thecompen-satorcomprisestwocounter-rotatingmassesrun-ningatthesamespeedasthecrankshaft.

Witha1stordermomentcompensatorfittedaft,thehorizontalmomentwilldecreasetobetween0and30%ofthevaluestatedinthelasttableofthischap-ter,dependingonthepositionofthenode.The1storderverticalmomentwilldecreasetoabout30%ofthevaluestatedinthetable.

Sinceresonancewithboththeverticalandthehori-zontalhullvibrationmodeisrare,thestandarden-gineisnotpreparedforthefittingofsuchcompen-sators.

2ndordermomentson4,5and6-cylinderengines

The2ndordermomentactsonlyintheverticaldi-rection.Precautionsneedonlytobeconsideredforfour,fiveandsixcylinderengines.

Resonancewiththe2ndordermomentmayoccurathullvibrationswithmorethanthreenodes.Con-trarytothecalculationofnaturalfrequencywith2and3nodes,thecalculationofthe4and5nodenat-uralfrequenciesforthehullisarathercomprehen-siveprocedureand,despiteadvancedcalculationmethods,isoftennotveryaccurate.Consequently,onlyaratheruncertainbasisfordecisionsisavail-ablerelatingtothenaturalfrequencyaswellasthepositionofthenodesinrelationtothemainengine

A2ndordermomentcompensatorcomprisestwocounter-rotatingmassesrunningattwicetheen-ginespeed.2ndordermomentcompensatorsarenotincludedinthebasicextentofdelivery.

SeveralsolutionsareshowninFig.7.06forcom-pensationoreliminationofthe2ndordermoment.Themostcostefficientsolutionmustbefoundineachcase,e.g.:

Nocompensators,ifconsideredunnecessaryonthebasisofnaturalfrequency,nodalpointandsizeofthe2ndordermoment

Acompensatormountedontheaftendoftheenginedrivenbythemainchaindrive,option:431203

Acompensatormountedonthefrontend,drivenfromthecrankshaftthroughaseparatechaindrive,option:431213

Compensatorsonbothaftandforeendcom-pletelyeliminatingtheexternal2ndordermo-ment,options:431203and431213

Brieflyspeaking,compensatorspositionedonanodeornearitareinefficient.Ifitisnecessary,solu-tionno.4shouldbeconsidered.

Adecisionregardingthevibrationaspectsandthepossibleuseofcompensatorsmustbereachedatthecontractstagepreferablybasedondatafromsisterships.Ifnosistershipshavebeenbuilt,werecommendtomakecalculationstodeterminewhichoftheabovesolutionsshouldbechosen.

Ifnocompensatorsarechosen,theenginecanbedeliveredpreparedforretro-fittingofcompensatorsontheforeend,seeoption:431212.Thedecisiontopreparetheenginemustalsobemadeatthecon-tractstage.Measurementstakenduringseatrialorinservicewithfullyloadedshipcanshowwhetherthereisaneedforcompensators.

Ifnocalculationsareavailableatthecontractstageweadviseorderingtheenginewitha2ndordermo-mentcompensatorontheaftend,option:431203,andtomakepreparationsforthefittingofacom-pensatoronthefrontend,option:431212.

Ifitisdecidedneithertousecompensatorsnorpre-parethemainengineforretro-fitting,thefollowingsolutioncanbeused:

Anelectricallydrivencompensator,option:431601,synchronisedtothecorrectphaserelativetotheexternalforceormomentcanneutralisetheex-citation.Thistypeofcompensatorneedsanextraseatingfitted,preferablyinthesteeringgearroomwheredeflectionsarelargest,andthecompensatorwillhavethegreatesteffect.

Theelectricallydrivencompensatorwillnotgiverisetodistortingstressesinthehull,butitismoreex-pensivethantheengine-mountedcompensatorsaslistedabove.Morethan70electricallydrivencom-pensatorsareinservicewithgoodresults.

MomentcompensatorAftend,option:431203

MomentcompensatorForeend,option:431213

Centrelinecrankshaft

CompensatingmomentF2CxLnodeoutbalancesM2V

M2V

M2V

M2V

NodeAFT

F2C

Lnode

MomentfromcompensatorM2CoutbalancesM2V

node

4

3

node

1780680-4.0

Fig.7.06:Optional2ndordermomentcompensator

Fig.7.07:1stand2ndordermomentcompensator

PowerRelatedUnbalance(PRU)

Toevaluateifthereisariskthat1stand2ndorderexternalmomentswillexcitedisturbinghullvibra-tions,theconceptPowerRelatedUnbalancecanbeusedasaguidance,seefig.7.07.

1784923-6.0

PRUNm/kW Needforcompensator

from0to60 notrelevant

from60to120 unlikely

from120to220 likely

above220 mostlikely

PRU

Externalmoment

Enginepower

Nm/kW

Inthetableattheendofthischapter,theexternalmoments(M1)arestatedatthespeed(n1)andMCR

WiththePRU-value,statingtheexternalmomentrelativetotheenginepower,itispossibletogiveanestimateoftheriskofhullvibrationsforaspecificengine.Basedonserviceexperiencefromagreater

numberoflargeshipswithenginesofdifferenttypes

ratinginpointL1ofthelayoutdiagram.Forotherspeeds(nA),thecorrespondingexternalmoments(MA)arecalculatedbymeansoftheformula:

n2

MMxA kNm

A 1 n

andcylindernumbers,thePRU-valueshavebeenclassifiedinfourgroupsasfollows:

1

(Thetoleranceonthecalculatedvaluesis2.5%).

1780681-6.2

Fig.7.08a:H-typeguideforcemoments Fig.7.08b:X-typeguideformoments

GuideForceMoments

Theso-calledguideforcemomentsarecausedbythetransversereactionforcesactingonthecrossheadsduetotheconnectingrod/crankshaftmechanism.Thesemomentsmayexciteenginevi-brations,movingtheenginetopathwartshipsandcausingarocking(excitedbyH-moment)ortwisting(excitedbyX-moment)movementoftheengineasillustratedinFigs.7.08aand7.08b.

TheguideforcemomentscorrespondingtotheMCRrating(L1)arestatedinthelasttable.

Topbracing

Theguideforcemomentsareharmlesstotheen-ginebutmayexciterelativelargevibrationsifareso-nanceoccurintheengine/shipstructuresystem.

Asadetailedcalculationofthesystemisnormallynotavailable,MANB&WDieselrecommendthatatopbracingisinstalledbetweentheengine'supperplatformbracketsandthecasingsideforthefirstvesselinaseries.Forfurtherinformationpleaseseesection5‘Topbracing’.

Themechanicaltopbracing,option:483112com-prisesstiffconnections(links)withfrictionplatesandalternativelyahydraulictopbracing,option:483122toallowadjustmenttotheloadingcondi-tionsoftheship.Withbothtypesoftopbracingtheabove-mentionednaturalfrequencywillin-creasetoalevelwhereresonancewilloccurabovethenormalenginespeed.Detailsofthetopbrac-ingsareshowninsection5.

DefinitionofGuideForceMoments

Duringtheyearsithasbeendiscussedhowtodefinetheguideforcemoments.Especiallynowthatcom-pleteFEM-modelsaremadetopredicthull/enginein-teraction,theproperdefinitionofthesemomentshasbecomeincreasinglyimportant.

H-typeGuideForceMoment(MH)

Eachcylinderunitproducesaforcecoupleconsist-ingof:

1: Aforceatcrankshaftlevel.

2:Anotherforceatcrossheadguidelevel.Thepo-sitionoftheforcechangesoveronerevolution,astheguideshoereciprocatesontheguide.

AsthedeflectionshapefortheH-typeisequalforeachcylindertheNthorderH-typeguideforcemo-mentforanN-cylinderenginewithregularfiringor-deris:

N•MH(onecylinder).

Formodellingpurposethesizeoftheforcesintheforcecoupleis:

Force=MH/L kN

whereListhedistancebetweencrankshaftlevelandthemiddlepositionofthecrossheadguide(i.e.thelengthoftheconnectingrod).

Astheinteractionbetweenengineandhullisattheengineseatingandthetopbracingpositions,thisforcecouplemayalternativelybeappliedinthosepositionswithaverticaldistanceof(LZ).Thentheforcecanbecalculatedas:

ForceZ=MH/LZkN

Anyotherverticaldistancemaybeapplied,soastoaccommodatetheactualhull(FEM)model.

Theforcecouplemaybedistributedatanynumberofpointsinthelongitudinaldirection.Areasonablewayofdividingthecoupleisbythenumberoftop

bracingandthenapplyingtheforcesinthosepoints.

ForceZ,onepoint=ForceZ,total/Ntopbracing,totalkN

X-typeGuideForceMoment(MX)

TheX-typeguideforcemomentiscalculatedbasedonthesameforcecoupleasdescribedabove.How-everasthedeflectionshapeistwistingtheengineeachcylinderunitdoesnotcontributewithanequalamount.Thecentreunitsdonotcontributeverymuchwhereastheunitsateachendcontributesmuch.

Aso-called‘Bi-moment’canbecalculated(Fig.7.08):’Bi-moment’=S[force-couple(cyl.X)•distX]

inkNm2

TheX-typeguideforcemomentisthendefinedas:MX=‘Bi-Moment’/L kNm

Formodellingpurposethesizeofthefour(4)forces

(seeFig.7.05)canbecalculated:

Force=MX/LX kNwhere:

LX:ishorizontallengthbetween’forcepoints’(Fig.7.05)

SimilartothesituationfortheH-typeguideforcemoment,theforcesmaybeappliedinpositionssuitablefortheFEMmodelofthehull.ThustheforcesmaybereferredtoanotherverticallevelLZabovecrankshaftcentreline.Theseforcescanbecalculatedasfollows:

ForceZ,onepoint=Mx•L kN

Lz•Lx

Forcalculatingtheforcesthelengthoftheconnectiingrodistobeused:L=2660mm

AxialVibrations

Whenthecrankthrowisloadedbythegaspressurethroughtheconnectingrodmechanism,thearmsofthecrankthrowdeflectintheaxialdirectionofthecrankshaft,excitingaxialvibrations.Throughthethrustbearing,thesystemisconnectedtotheship`shull.

Generally,onlyzero-nodeaxialvibrationsareofin-terest.Thustheeffectoftheadditionalbendingstressesinthecrankshaftandpossiblevibrationsoftheship`sstructureduetothereactionforceinthethrustbearingaretobeconsidered.

Anaxialdamperisfittedasstandard:431111toallMCenginesminimisingtheeffectsoftheaxialvibra-tions.

Thefiveandsix-cylinderenginesareequippedwithanaxialvibrationmonitor(431117).

TorsionalVibrations

Thereciprocatingandrotatingmassesoftheengineincludingthecrankshaft,thethrustshaft,theinter-mediateshaft(s),thepropellershaftandthepropel-lerareforcalculationpurposesconsideredasasystemofrotatingmasses(inertias)interconnectedbytorsionalsprings.Thegaspressureoftheengineactsthroughtheconnectingrodmechanismwithavaryingtorqueoneachcrankthrow,excitingtor-sionalvibrationinthesystemwithdifferentfrequen-cies.

Ingeneral,onlytorsionalvibrationswithoneandtwonodesneedtobeconsidered.Themaincriticalorder,causingthelargestextrastressesintheshaftline,isnormallythevibrationwithorderequaltothenumberofcylinders,i.e.,fivecyclesperrevolutiononafivecylinderengine.Thisresonanceisposi-tionedattheenginespeedcorrespondingtothenaturaltorsionalfrequencydividedbythenumberofcylinders.

Thetorsionalvibrationconditionsmay,forcertaininstallationsrequireatorsionalvibrationdamper,option:431105.

Basedonourstatistics,thisneedmayariseforthefollowingtypesofinstallation:

Plantswithcontrollablepitchpropeller

Plantswithunusualshaftinglayoutandforspecialowner/yardrequirements

Plantswith8-cylinderengines.

Theso-calledQPT(QuickPassageofabarredspeedrangeTechnique),option:431108,isanal-ternativetoatorsionalvibrationdamper,onaplantequippedwithacontrollablepitchpropeller.TheQPTcouldbeimplementedinthegovernorinordertolimitthevibratorystressesduringthepassageofthebarredspeedrange.

TheapplicationoftheQPThastobedecidedbytheenginemakerandMANB&WDieselA/Sbasedonfi-naltorsionalvibrationcalculations.

Four,fiveandsix-cylinderengines,requirespecialattention.Onaccountoftheheavyexcitation,thenaturalfrequencyofthesystemwithone-nodevi-brationshouldbesituatedawayfromthenormalop-eratingspeedrange,toavoiditseffect.Thiscanbeachievedbychangingthemassesand/orthestiff-nessofthesystemsoastogiveamuchhigher,ormuchlower,naturalfrequency,calledundercriticalorovercriticalrunning,respectively.

Owingtotheverylargevarietyofpossibleshaftingarrangementsthatmaybeusedincombinationwithaspecificengine,onlydetailedtorsionalvibrationcalculationsofthespecificplantcandeterminewhetherornotatorsionalvibrationdamperisnecessary.

Undercriticalrunning

Thenaturalfrequencyoftheone-nodevibrationissoadjustedthatresonancewiththemaincriticalor-deroccursabout35-45%abovetheenginespeedatspecifiedMCR.

Suchundercriticalconditionscanberealisedbychoosingarigidshaftsystem,leadingtoarelativelyhighnaturalfrequency.

Thecharacteristicsofanundercriticalsystemarenormally:

Relativelyshortshaftingsystem

Probablynotuningwheel

Turningwheelwithrelativelylowinertia

Largediametersofshafting,enablingtheuseofshaftingmaterialwithamoderateultimatetensilestrength,butrequiringcarefulshaftalignment,(duetorelativelyhighbendingstiffness)

Withoutbarredspeedrange,option:407016.Whenrunningundercritical,significantvaryingtorqueatMCRconditionsofabout100-150%ofthemeantorqueistobeexpected.

Thistorque(propellertorsionalamplitude)inducesasignificantvaryingpropellerthrustwhich,underad-verseconditions,mightexciteannoyinglongitudinalvibrationsonengine/doublebottomand/ordeckhouse.

Theyardshouldbeawareofthisandensurethatthecompleteaftbodystructureoftheship,includingthedoublebottomintheengineroom,isdesignedtobeabletocopewiththedescribedphenomena.

Overcriticalrunning

Thenaturalfrequencyoftheone-nodevibrationissoadjustedthatresonancewiththemaincriticalor-deroccursabout30-70%belowtheenginespeedatspecifiedMCR.Suchovercriticalconditionscanberealisedbychoosinganelasticshaftsystem,leadingtoarelativelylownaturalfrequency.

Thecharacteristicsofovercriticalconditionsare:

Tuningwheelmaybenecessaryoncrankshaftforeend

Turningwheelwithrelativelyhighinertia

Shaftswithrelativelysmalldiameters,requiringshaftingmaterialwitharelativelyhighultimatetensilestrength

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论