山西省晋城市陵川一中2023年数学高一上期末含解析_第1页
山西省晋城市陵川一中2023年数学高一上期末含解析_第2页
山西省晋城市陵川一中2023年数学高一上期末含解析_第3页
山西省晋城市陵川一中2023年数学高一上期末含解析_第4页
山西省晋城市陵川一中2023年数学高一上期末含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省晋城市陵川一中2023年数学高一上期末考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.3.若,则的可能值为()A.0 B.0,1C.0,2 D.0,1,24.已知集合,集合与的关系如图所示,则集合可能是()A. B.C. D.5.已知向量,,若与共线,则等于()A. B.C. D.6.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.7.函数的最大值为A.2 B.C. D.48.下列选项正确的是()A. B.C. D.9.函数图像大致为()A. B.C. D.10.已知函数f(x)=log3(x+1),若f(a)=1,则a等于()A.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.如果满足对任意实数,都有成立,那么a的取值范围是______12.给出下列五个论断:①;②;③;④;⑤.以其中的两个论断作为条件,一个论断作为结论,写出一个正确的命题:___________.13.已知角的终边过点,则_______14.已知函数的定义域为,当时,,若,则的解集为______15.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.16.已知函数集合,若集合中有3个元素,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图2,某摩天轮最高点距离地面高度为110m,转盘直径为100m,设置有48个座舱,开启时按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30.(1)求游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度;(2)以轴心为原点,与地面平行的直线为轴,所在的直线为轴建立直角坐标系,游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为m,求在转动一周的过程中,关于的函数解析式;(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m)关于的函数解析式,并求高度差的最大值(结果精确到0.1m).参考公式:.参考数据:,18.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆О上一点,且AB=BC=5,CD=3(1)求该圆柱的侧面积;(2)求点B到平面ACD的距离19.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)20.是否存在锐角,使得:,同时成立?若存在,求出锐角的值;若不存在,说明理由.21.已知函数,.(1)求函数的最小正周期以及单调递增区间;(2)求函数在区间上的最小值及相应的的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.2、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.3、C【解析】根据,分,,讨论求解.【详解】因为,当时,集合为,不成立;当时,集合为,成立;当时,则(舍去)或,当时,集合为故选:C4、D【解析】由图可得,由选项即可判断.【详解】解:由图可知:,,由选项可知:,故选:D.5、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行7、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.8、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A9、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B10、C【解析】根据,解对数方程,直接得到答案.【详解】∵,∴a+1=3,∴a=2.故选:C.点睛】本题考查了解对数方程,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.12、②③⇒⑤;③④⇒⑤;②④⇒⑤【解析】利用不等式的性质和做差比较即可得到答案.【详解】由②③⇒⑤,因为,,则.由③④⇒⑤,由于,,则,所以.由②④⇒⑤,由于,且,则,所以.故答案为:②③⇒⑤;③④⇒⑤;②④⇒⑤13、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.14、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.15、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,16、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m;(2);(3),;m【解析】(1)设时,游客甲位于,得到以为始边的角,即初相,再利用周期性和最值得到函数的解析式,令求解即可.(2)由(1)的求解过程即可得出答案.(3)甲、乙两人的位置分别用点、表示,则,分别求出后甲和乙距离地面的高度,从而求出高度差,再利用已知条件给出的参考公式进行化简变形,利用三角函数的有界性进行分析求解即可.【详解】(1)设时,游客甲位于,得到以为始边的角为,根据摩天轮转一周需要30,可知座舱转动的速度约为,由题意可得,,(),当时,,所以游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度为米.(2)由(1)可得,,;(3)如图,甲、乙两人的位置分别用点、表示,则,经过后,甲距离地面的高度为,点相对于始终落后,此时乙距离地面的高度,则甲、乙高度差为,利用,可得,,当或,即或,所以的最大值为米,所以甲、乙两人距离地面的高度差的最大值约为米.18、(1)(2)【解析】(1)利用圆柱的侧面积公式计算出侧面积.(2)利用等体积法求得到平面的距离.【小问1详解】圆柱的底面半径为,高为,所以圆柱的侧面积为.【小问2详解】是圆的直径,所以,,.根据圆柱的几何性质可知,由于,所以平面,所以.,,设到平面的距离为,则,即.19、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为20、存在,【解析】利用两角和的正切公式可得,结合可求及,求出后可得的值.【详解】假设存在锐角使得,同时成立.得,所以.又因为,所以.因此可以看成是方程的两个根.解该方程得.若,则.这与为锐角矛盾.所以,故,因为为锐角,所以.所以满足条件的存在,且.【点睛】三角方程的求解的基本方法是消元法,也可以利用三角变换公式把三角方程化简为角的三角函数的方程,求出它们的值后可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论