上海市丰华中学2023年数学高一上期末预测试题含解析_第1页
上海市丰华中学2023年数学高一上期末预测试题含解析_第2页
上海市丰华中学2023年数学高一上期末预测试题含解析_第3页
上海市丰华中学2023年数学高一上期末预测试题含解析_第4页
上海市丰华中学2023年数学高一上期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市丰华中学2023年数学高一上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知函数y=(12)x的图象与函数y=logax(a>0,A.[ 2C.[ 82.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分有一职工八月份收入20000元,该职工八月份应缴纳个税为()A.2000元 B.1500元C.990元 D.1590元3.使得成立的一个充分不必要条件是()A. B.C. D.4.已知函数(,且)的图象恒过点P,若角的终边经过点P,则()A. B.C. D.5.已知角终边上一点,则A. B.C. D.6.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位7.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为8.已知函数部分图象如图所示,则A. B.C. D.9.向量,若,则k的值是()A.1 B.C.4 D.10.全称量词命题“,”的否定是()A., B.,C., D.以上都不正确11.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.12.若,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.14.若,,则a、b的大小关系是______.(用“<”连接)15.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____16.集合,则____________三、解答题(本大题共6小题,共70分)17.已知向量,,,求:(1),;(2)18.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.19.已知函数.(1)判断函数f(x)的单调性并给出证明;(2)若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若,当x∈[2,3]时恒成立,求m的最大值20.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.21.某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前个周需求量吨与的函数关系式为,为常数,且前4个周城区内汽车的汽油需求量为100吨.(1)试写出第个周结束时,汽油存储量(吨)与的函数关系式;(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定的取值范围.22.已知是同一平面内的三个向量,其中(1)若,且,求:的坐标(2)若,且与垂直,求与夹角

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由已知中两函数的图象交于点P( 由指数函数的性质可知,若x0≥2,则0<y由于x0≥2,所以a>1且4a点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于a的不等式是解答的关键,试题比较基础,属于基础题.2、D【解析】根据税款分段累计计算的方法,分段求得职工超出元的部分的纳税所得额,即可求解.【详解】由题意,职工八月份收入为元,其中纳税部分为元,其中不超过3000元的部分,纳税额为元,超过3000元至12000元的部分,纳税额为元,超过12000元至25000元的部分,纳税额为元,所以该职工八月份应缴纳个税为元.故选:D.3、C【解析】由不等式、正弦函数、指数函数、对数函数的性质,结合充分、必要性的定义判断选项条件与已知条件的关系.【详解】A:不一定有不成立,而有成立,故为必要不充分条件;B:不一定成立,而也不一定有,故为既不充分也不必要条件;C:必有成立,当不一定有成立,故为充分不必要条件;D:必有成立,同时必有,故为充要条件.故选:C.4、A【解析】由题可得点,再利用三角函数的定义即求.【详解】令,则,所以函数(,且)的图象恒过点,又角的终边经过点,所以,故选:A.5、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题6、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)7、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件8、C【解析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【点睛】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.9、B【解析】首先算出的坐标,然后根据建立方程求解即可.【详解】因为所以,因为,所以,所以故选:B10、C【解析】根据全称量词命题的否定是存在量词命题,即可得出结论.【详解】全称量词命题“,”的否定为“,”.故选:C.11、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D12、A【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.二、填空题(本大题共4小题,共20分)13、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.14、【解析】容易看出,<0,>0,从而可得出a,b的大小关系【详解】,>0,,∴a<b故答案为a<b【点睛】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.15、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.16、【解析】分别解出集合,,再根据并集的定义计算可得.【详解】∵∴,∵,∴,则,故答案为:【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题.三、解答题(本大题共6小题,共70分)17、(1),(2)【解析】(1)利用向量的坐标运算即得;(2)利用向量模长的坐标公式即求.【小问1详解】∵向量,,,所以,.【小问2详解】∵,,∴,所以18、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故19、(1)单调递增(2)见解析【解析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证(3)先根据参变分离将不等式恒成立化为对应函数最值问题:的最小值,再利用对勾函数性质得最小值,即得的范围以及的最大值试题解析:解:(1)不论a为何实数,f(x)在定义域上单调递增.证明:设x1,x2∈R,且x1<x2,则由可知,所以,所以所以由定义可知,不论为何值,在定义域上单调递增(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.(3)由条件可得:m2x=(2x+1)+-3恒成立.m(2x+1)+-3的最小值,x∈[2,3].设t=2x+1,则t∈[5,9],函数g(t)=t+-3在[5,9]上单调递增,所以g(t)的最小值是g(5)=,所以m,即m的最大值是.20、(1)(2)的值是,最小值是,无最大值【解析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.21、(1)(2)【解析】(1)根据题意前4个周城区内汽车的汽油需求量为100吨,得,;(2)每周结束时加油站的汽油存储量不超过150吨,故,恒成立,转化为恒成立,通过换元分别求得函数的最值即可解析:(1)由已知条件得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论