![天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/3C/38/wKhkGWWslFiAWvh0AAHCtftvaVU811.jpg)
![天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/3C/38/wKhkGWWslFiAWvh0AAHCtftvaVU8112.jpg)
![天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/3C/38/wKhkGWWslFiAWvh0AAHCtftvaVU8113.jpg)
![天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/3C/38/wKhkGWWslFiAWvh0AAHCtftvaVU8114.jpg)
![天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/3C/38/wKhkGWWslFiAWvh0AAHCtftvaVU8115.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津二十五中学2023-2024学年数学九年级第一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若二次函数的图像与轴有两个交点,则实数的取值范围是()A. B. C. D.2.如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.93.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克23元,连续两次上涨后,售价上升到每千克40元,则下列方程中正确的是()A. B.C. D.4.如图所示,河堤横断面迎水坡AB的坡比是1:3,坡高BC=20,则坡面AB的长度()A.60 B.100 C.50 D.205.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. B. C. D.6.若a是方程的一个解,则的值为A.3 B. C.9 D.7.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)8.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.9.如图,在半径为的中,弦与交于点,,,则的长是()A. B. C. D.10.关于的二次方程的一个根是0,则a的值是()A.1 B.-1 C.1或-1 D.0.511.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米 B.米 C.米 D.米12.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).14.若a,b是一元二次方程的两根,则________.15.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.16.如图,在的矩形方框内有一个不规则的区城(图中阴影部分所示),小明同学用随机的办法求区域的面积.若每次在矩形内随机产生10000个点,并记录落在区域内的点的个数,经过多次试验,计算出落在区域内点的个数的平均值为6700个,则区域的面积约为___________.17.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________.18.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.三、解答题(共78分)19.(8分)如图1,已知抛物线y=x2+bx+c经过点A(3,0),点B(﹣1,0),与y轴负半轴交于点C,连接BC、AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,直线BC与抛物线的对称轴交于点K,将直线AC绕点C按顺时针方向旋转α°,直线AC在旋转过程中的对应直线A′C与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时点M的坐标.20.(8分)已知ΔABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出ΔABC绕点C按顺时针方向旋转;90°后的.21.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE//y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。22.(10分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.23.(10分)今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?24.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、Dn′标出)25.(12分)已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标;(3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.26.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.2、B【分析】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【详解】延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=1.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.3、A【分析】根据增长率a%求出第一次提价后的售价,然后再求第二次提价后的售价,即可得出答案.【详解】根据题意可得:23(1+a%)2=40,故答案选择A.【点睛】本题考查的是一元二次方程在实际生活中的应用,比较简单,记住公式“增长后的量=增长前的量×(1+增长率)”.4、D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【详解】Rt△ABC中,BC=20,tanA=1:3;∴AC=BC÷tanA=60,∴AB20.故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.5、D【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴,故A正确;∵DF//BE,∴△ADF∽△ABF,∴,故B正确;∵DF//BE,∴,∵,∴,故C正确;∵DE//BC,∴△ADE∽△ABC,∴,∵DF//BE,∴,∴,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.6、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.7、B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.8、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.9、C【分析】过点作于点,于,连接,由垂径定理得出,得出,由勾股定理得出,证出是等腰直角三角形,得出,求出,由直角三角形的性质得出,由勾股定理得出,即可得出答案.【详解】解:过点作于点,于,连接,如图所示:则,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故选C.【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.10、B【分析】把代入可得,根据一元二次方程的定义可得,从而可求出的值.【详解】把代入,得:,解得:,∵是关于x的一元二次方程,∴,即,∴的值是,故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件.11、B【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【详解】解:作AD⊥BC于点D,则BD=+0.3=,∵cosα=,∴cosα=,解得,AB=米,故选B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.12、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.二、填空题(每题4分,共24分)13、【详解】解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).故答案是:.14、【分析】将通分变形为,然后利用根与系数的关系即可求解.【详解】∵a、b是一元二次方程的两根∴,∴故答案为:.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握,是解题的关键.15、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.16、8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.17、3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.18、【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为4.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴当x=4时,BD取得最小值为4.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为4.故答案为:4.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题(共78分)19、(1)y=x2﹣x﹣;(2)存在符合条件的点P,且坐标为(,)、(,)、(1,﹣)、(2,﹣);(3)点M的坐标是(2,﹣)或(1,﹣).【分析】(1)知道A、B两点坐标后,利用待定系数法可确定该抛物线的解析式.(2)此题中,以A、B、C、P为顶点的四边形可分作两部分,若该四边形的面积是△ABC面积的1.5倍,那么四边形中除△ABC以外部分的面积应是△ABC面积的一半,分三种情况:①当点P在x轴上方时,△ABP的面积应该是△ABC面积的一半,因此点P的纵坐标应该是点C纵坐标绝对值的一半,代入抛物线解析式中即可确定点P的坐标;②当点P在B、C段时,显然△BPC的面积要远小于△ABC面积的一半,此种情况不予考虑;③当点P在A、C段时,由A、C的长以及△ACP的面积可求出点P到直线AC的距离,首先在射线CK上取线段CD,使得CD的长等于点P到直线AC的距离,先求出过点D且平行于l1的直线解析式,这条直线与抛物线的交点即为符合条件的点P.(3)从题干的旋转条件来看,直线l1旋转的范围应该是直线AC、直线BC中间的部分,而△MCK的腰和底并不明确,所以分情况讨论:①CK=CM、②KC=KM、③MC=MK;求出点M的坐标.【详解】解:(1)如图1,∵点A(3,0),点B(﹣1,0),∴,解得,则该抛物线的解析式为:y=x2﹣x﹣;(2)易知OA=3、OB=1、OC=,则:S△ABC=AB•OC=×4×=2.①当点P在x轴上方时,由题意知:S△ABP=S△ABC,则:点P到x轴的距离等于点C到x轴距离的一半,即点P的纵坐标为;令y=x2﹣x﹣=,化简得:2x2﹣4x﹣9=0解得x=;∴P1(,)、P2(,);②当点P在抛物线的B、C段时,显然△BCP的面积要小于S△ABC,此种情况不合题意;③当点P在抛物线的A、C段时,S△ACP=AC•h=S△ABC=,则h=1;在射线CK上取点D,使得CD=h=1,过点D作直线DE∥AC,交y轴于点E,如图2;在Rt△CDE中,∠ECD=∠BCO=30°,CD=1,则CE=、OE=OC+CE=,点E(0,﹣)∴直线DE:y=x﹣,联立抛物线的解析式,有:,解得:或,∴P3(1,-)、P4(2,-);综上,存在符合条件的点P,坐标为(,),(,),(1,-),(2,-);(3)如图3,由(1)知:y=x2-x-=(x﹣1)2﹣,∴抛物线的对称轴x=1;①当KC=KM时,点C、M1关于抛物线的对称轴x=1对称,则点M1的坐标是(2,﹣);②KC=CM时,K(1,﹣2),KC=BC.则直线A′C与抛物线的另一交点M2与点B重合,M、C、K三点共线,不能构成三角形;③当MK=MC时,点D是CK的中点.∵∠OCA=60°,∠BCO=30°,∴∠BCA=90°,即BC⊥AC,则作线段KC的中垂线必平行AC且过点D,∴点M3与点P3(1,-)、P4(2,-)重合,综上所述,点M的坐标是(2,﹣)或(1,﹣).【点睛】该题考查了利用待定系数法确定函数解析式,图形面积的解法以及等腰三角形的判定和性质等重点知识;后两题涉及的情况较多,应分类进行讨论,容易漏解.20、(1)A(0,4),C(3,1);(2)详见解析【分析】(1)直接从平面直角坐标系写出点A和点C的坐标即可;(2)根据找出点A、B、C绕点C顺时针方向旋转90°后的对应点A'、B'、C'的位置,然后顺次连接即可.【详解】解:(1)由图可得,A(0,4)、C(3,1);(2)如图,△A'B'C'即为所求.【点睛】本题考查了利用旋转变换作图和平面直角坐标系,根据旋转的性质准确找出对应点是解答本题的关键.21、(1)(-1,0),(3,0);(2);(3)1.【分析】(1)根据OA,OB的长,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据相似三角形的判定与性质,可得EG,EF的长,根据整式的加减,可得答案.【详解】解:(1)由抛物线交轴于两点(A在B的左侧),且OA=1,OB=3,得A点坐标(-1,0),B点坐标(3,0);(2)设抛物线的解析式为,把C点坐标代入函数解析式,得解得,抛物线的解析式为;(3)EF+EG=1(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图:设P(t,-t2+2t+3),则PQ=-t2+2t+3,AQ=1+t,QB=3-t,∵PQ∥EF,∴△BEF∽△BQP∴∴又∵PQ∥EG,∴△AEG∽△AQP,∴∴∴.【点睛】本题考查了二次函数综合题,解(1)的关键是利用点的坐标表示方法;解(2)的关键是利用待定系数法;解(3)的关键是利用相似三角形的性质得出EG,EF的长,又利用了整式的加减.22、(1)x1=﹣3,x2=1;(2)【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x2+2x﹣3=1,分解因式得:(x+3)(x﹣1)=1,可得x+3=1或x﹣1=1,解得:x1=﹣3,x2=1;(2)方程变形得:x2﹣3x=﹣,配方得:x2﹣3x+=﹣+,即(x﹣)2=,解得:.【点睛】此题考查了解一元二次方程因式分解法及配方法,熟练掌握各种解法是解本题的关键.23、(1)7头;(2)会超过1500头【分析】(1)设每头发病生猪平均每天传染x头生猪,根据“第一天发现3头生猪发病,两天后发现共有192头生猪发病”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据3天后生猪发病头数=2天后生猪发病头数×(1+7),即可求出3天后生猪发病头数,再将其与1500进行比较即可得出结论.【详解】解:(1)设每头发病生猪平均每天传染头生猪,依题意,得,解得:,(不合题意,舍去).答:每头发病生猪平均每天传染7头生猪.(2)(头,.答:若疫情得不到有效控制,3天后生猪发病头数会超过1500头.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24、(1)详见解析;(2)10;(3)详见解析【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣×2×4﹣×2×4﹣×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点.25、(1),;(2);(3)或或【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b,c的二元一次方程组求解即可(2)过点作,过点作.证明△CMD相似于△AME,再根据对应线段成比例求解即可(3)根据题意设点P的纵坐标为y,首先根据三角形面积得出EF与y的关系,再利用勾股定理得出EF与y的关系,从而得出y的值,再代入抛物线解析式求出x的值,得出点坐标.【详解】解:(1)把和代入得:解方程组得出:所以,,(2)由已知条件得出C点坐标为,设.过点作,过点作.两个直角三角形的三个角对应相等,∴∴∴∵解得:∴(3)设点P的纵坐标为y,由题意得出,,∵MP与PE都为圆的半径,∴MP=PE∴整理得出,∴∵∴y=1,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国冷冻广式点心行业头部企业市场占有率及排名调研报告
- 2025-2030全球半导体旋涂玻璃行业调研及趋势分析报告
- 2025年全球及中国高分辨率盘式离心粒度分析仪行业头部企业市场占有率及排名调研报告
- 2025销售合同天津步思特科技有限公司货物与售后服务
- 家庭装修合同书
- 2025二期消防水炮火灾自动报警及联动控制系统供货维修项目施工合同
- 2025钢筋劳务用工合同全面版
- 预拌混凝土采购合同
- 提高污水处理效果的技术改进研究
- 民间借款合同示范文本
- 医务从业人员行为规范培训
- 中小学校食品安全管理现状与膳食经费优化方案
- 第15届-17届全国中学生物理竞赛预赛试卷含答案
- 外研版小学英语(三起点)六年级上册期末测试题及答案(共3套)
- 月结合同模板
- 上海市黄浦区2024年数学六年级第一学期期末监测试题含解析
- 2023电化学储能电站消防安全标准铅炭电池(铅酸电池)
- 青岛版五四制四年级数学上册竖式计算100道
- DB11T 1322.94-2024安全生产等级评定技术规范 第94部分:救助管理机构
- 货场煤泥合同模板
- 肠道健康管理课件
评论
0/150
提交评论