天津部分区2023年数学高一上期末调研模拟试题含解析_第1页
天津部分区2023年数学高一上期末调研模拟试题含解析_第2页
天津部分区2023年数学高一上期末调研模拟试题含解析_第3页
天津部分区2023年数学高一上期末调研模拟试题含解析_第4页
天津部分区2023年数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津部分区2023年数学高一上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.设集合,,,则A. B.C. D.2.已知函数,且,则A. B.C. D.3.设函数,若关于的方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.4.已知幂函数的图象过点,则A. B.C.1 D.25.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.6.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.7.函数f(x)=,的图象大致是()A. B.C. D.8.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.9.函数的定义域为()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]10.若角满足,,则角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知关于不等式的解集为,则的最小值是___________.12.已知,且的终边上一点P的坐标为,则=______13.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.14.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.15.已知集合,,则集合中子集个数是____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.近年来,国家大力推动职业教育发展,职业教育体系不断完善,人才培养专业结构更加符合市场需求.一批职业培训学校以市场为主导,积极参与职业教育的改革和创新.某职业培训学校共开设了六个专业,根据前若干年的统计数据,学校统计了各专业每年的就业率(直接就业的学生人数与招生人数的比值)和每年各专业的招生人数,具体统计数据如下表:专业机电维修车内美容衣物翻新美容美发泛艺术类电脑技术招生人数就业率(1)从该校已毕业的学生中随机抽取人,求该生是“衣物翻新”专业且直接就业的概率;(2)为适应市场对人才需求的变化,该校决定从明年起,将“电脑技术”专业的招生人数减少人,将“机电维修”专业的招生人数增加人,假设“电脑技术”专业的直接就业人数不变,“机电维修”专业的就业率不变,其他专业的招生人数和就业率都不变,要使招生人数调整后全校整体的就业率比往年提高个百分点,求的值17.某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.(1)求总人数和分数在的人数;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.18.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A、B、C、D、E共五个等级,然后在相应赋分区间内利用转换公式进行赋分A等级排名占比15%,赋分分数区间是86-100;B等级排名占比35%,赋分分数区间是71-85;C等级排名占比35%,赋分分数区间是56-70;D等级排名占比13%,赋分分数区间是41-55;E等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.19.已知函数当时,判断在上的单调性并用定义证明;若对任意,不等式恒成立,求实数m的取值范围20.已知函数求的最小正周期以及图象的对称轴方程当时,求函数的最大值和最小值21.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】,,则=,所以故选B.2、A【解析】,,,,.故选:A.3、A【解析】根据图象可得:,,,.,则.令,,求函数的值域,即可得出结果.【详解】画出函数的大致图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,,则.令,,而函数在单调递增,所以,则.故选:A.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.4、B【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值.【详解】设,将点代入得,解得,则,所以,答案B.【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题.5、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键6、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D7、A【解析】判断函数的奇偶性,以及函数在上的符号,利用排除法进行判断即可【详解】∵f(x)=,∴,,∴函数是奇函数,排除D,当时,,则,排除B,C.故选:A8、B【解析】所以,所以。故选B。9、D【解析】根据函数式的性质可得,即可得定义域;【详解】根据的解析式,有:解之得:且;故选:D【点睛】本题考查了具体函数定义域的求法,属于简单题;10、C【解析】根据,,分别确定的范围,综合即得解.【详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:12、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:13、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较.【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法.14、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.15、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)0.08(2)120【解析】理解题意,根据数据列式求解【小问1详解】由题意,该校往年每年的招生人数为,“衣物翻新”专业直接就业的学生人数为,所以所求的概率为【小问2详解】由表格中的数据,可得往年各专业直接就业的人数分别为,,,,,,往年全校整体的就业率为,招生人数调整后全校整体的就业率为,解得17、(1)4;(2)众数和中位数分别是107.5,110;(3)﹒【解析】(1)先求出分数在内的学生的频率,由此能求出该班总人数,再求出分数在内的学生的频率,由此能求出分数在内的人数(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数(3)由题意分数在内有学生6名,其中男生有2名.设女生为,,,,男生为,,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率【小问1详解】分数在内的学生的频率为,∴该班总人数为分数在内的学生的频率为:,分数在内的人数为【小问2详解】由频率直方图可知众数是最高的小矩形底边中点的横坐标,即为设中位数为,,众数和中位数分别是107.5,110【小问3详解】由题意分数在内有学生名,其中男生有2名设女生为,,,,男生为,,从6名学生中选出2名的基本事件为:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15种,其中至多有1名男生的基本事件共14种,其中至多含有1名男生的概率为18、(1)a0.030;(2)54分;(3).【解析】(1)由各组频率和为1列方程即可得解;(2)由频率分布直方图结合等级达到C及以上所占排名等级占比列方程即可的解;(3)列出所有基本事件及满足要求的基本事件,由古典概型概率公式即可得解.【详解】(1)由题意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等级达到C及以上所占排名等级占比为15%+35%+35%=85%,假设原始分不少于x分可以达到赋分后的C等级及以上,易得,则有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能达到赋分后的C等级及以上;(3)由题知得分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5人中,得分在[40,50)内的有2人,得分在[50,60)的有3人记得分在[50,60)内的3位学生为a,b,c,得分在[40,50)内的2位学生为D,E,则从5人中任选2人,样本空间可记为{ab,ac,aD,aE,bc,bD,bE,cD,cE,DE},共包含10个样本用A表示“这2人中恰有一人得分在[40,50)内”,则A{aD,aE,bD,bE,cD,cE},A包含6个样本,故所求概率.【点睛】关键点点睛:解决本题的关键是对频率分布直方图的准确把握,在使用列举法解决古典概型的问题时,要注意不遗漏不重复.19、(1)见解析;(2)【解析】当时,在上单调递增,利用定义法能进行证明;令,由,得,利用分离参数思想得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论