版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市云南农大附中2024届数学高一上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.2.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.3.已知,则()A. B.7C. D.14.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.5.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}6.若a2+b2=2c2(c≠0),则直线ax+by+c=0被圆x2+y2=1所截得的弦长为A. B.1C. D.7.如图,是全集,是子集,则阴影部分表示的集合是()A. B.C. D.8.直线的倾斜角是A. B.C. D.9.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.10.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴11.已知函数,若,则x的值是()A.3 B.9C.或1 D.或312.若命题“,使得”为真命题,则实数a的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.14.函数且的图象恒过定点__________.15.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)16.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______三、解答题(本大题共6小题,共70分)17.在平面直角坐标系中,锐角的顶点是坐标原点O,始边为x轴的非负半轴,终边上有一点(1)求的值;(2)若,且,求角的值18.(1)已知,求的值;(2)计算:.19.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该简车抽象为圆O,筒车上的盛水桶抽象为圆O上的点P,已知圆O的半径为,圆心O距离水面,且当圆O上点P从水中浮现时(图中点)开始计算时间(1)根据如图所示的直角坐标系,将点P到水面的距离h(单位:m,在水面下,h为负数)表示为时间t(单位:s)的函数,并求时,点P到水面的距离;(2)在点P从开始转动的一圈内,点P到水面的距离不低于的时间有多长?20.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)21.如图,四棱锥中,底面为菱形,平面.(1)证明:平面平面;(2)设,,求到平面的距离.22.设函数.(1)求关于的不等式的解集;(2)若是偶函数,且,,,求的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】圆的圆心在直线上,设圆心为.圆与直线及都相切,所以,解得.此时半径为:.所以圆的方程为.故选B.2、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题3、A【解析】利用表示,代入求值.【详解】,即,.故选:A4、A【解析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:5、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算6、D【解析】因为,所以设弦长为,则,即.考点:本小题主要考查直线与圆的位置关系——相交.7、C【解析】利用阴影部分所属的集合写出阴影部分所表示的集合【详解】解:由图知,阴影部分在集合中,在集合中,但不在集合中,故阴影部分所表示的集合是.故选:C.8、B【解析】,斜率为,故倾斜角为.9、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D10、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键11、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A12、B【解析】在上有解,利用基本不等式求出的最小值即可.【详解】即在上有解,所以在上有解,由,当且仅当,即时取得等号,故故选:B二、填空题(本大题共4小题,共20分)13、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。14、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.15、相交【解析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.16、【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)根据角的终边上有一点,利用三角函数的定义得到,再利用二倍角的余弦公式求解;(2)利用角的变换,由求解.【详解】(1)∵角的终边上有一点,∴,∴,∴,∴.(2)∵,∴,∵,∴,∴,∵,∴.18、(1),(2).【解析】(1)把所给的式子进行平方运算,即可求出的值,找到和的关系即可求出的值;(2)化根式为分数指数幂,把对数式的真数用对数的运算性质拆开,再用对数的运算性质求解即可.【详解】(1)由得,由得,故.(2)19、(1),m(2)4s【解析】(1)根据题意先求出筒车转动的角速度,从而求出h关于时间t的函数,和时的函数值;(2)先确定定义域,再求解不等式,得到,从而求出答案.【小问1详解】筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为,故,当时,,故点P到水面的距离为m【小问2详解】点P从开始转动的一圈,所用时间,令,其中,解得:,则,故点P到水面的距离不低于的时间为4s.20、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.21、(1)详见解析(2)【解析】(1)证面面垂直可根据证线线垂直,∵为菱形,∴.∵平面,∴.∴平面.(2)可根据等体积法求解到平面的距离试题解析:(1)∵为菱形,∴.∵平面,∴.∴平面.又平面,∴平面平面.(2)∵,,∴,.∵,∴.若设到平面的距离为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司个人销售的年度工作计划
- 秋季七年级地理教学工作计划例文
- 中学2024-2024学年第二学期教科室工作计划
- 教师个人学习成长计划
- 考研英语 根据新大纲制定复习月计划
- 房地产销售经理月工作总结与计划
- 高二新学期学习计划范本
- 安全文化建设计划
- 2024年专业花卉市场销售协议样本版B版
- 实习护士工作计划
- 国外医学教育模式比较与我国医学教育学制改革
- 2023企业商学院规划方案
- ASCE7-05风荷载计算EXCEL表格
- 个人职业生涯SWOT分析的成功案例
- 支教沟通协商方案
- 《工作中沟通技巧》课件
- 军事知识常识小学生
- 班级管理课件:班级管理评价
- 血液科护理中的危重患者护理要点
- 《手机结构与原理》课件
- 初中数学思想方法导引
评论
0/150
提交评论