重庆市第三十中学2023-2024学年高一上数学期末调研试题含解析_第1页
重庆市第三十中学2023-2024学年高一上数学期末调研试题含解析_第2页
重庆市第三十中学2023-2024学年高一上数学期末调研试题含解析_第3页
重庆市第三十中学2023-2024学年高一上数学期末调研试题含解析_第4页
重庆市第三十中学2023-2024学年高一上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市第三十中学2023-2024学年高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天2.数学可以刻画现实世界中的和谐美,人体结构、建筑物、国旗、绘画、优选法等美的共性与黄金分割相关.黄金分割常数也可以表示成,则()A. B.C. D.3.若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是A. B.C D.,4.设函数的部分图象如图所示,若,且,则()A. B.C. D.5.圆与直线相交所得弦长为()A.1 B.C.2 D.26.已知六边形是边长为1的正六边形,则的值为A. B.C. D.7.已知,,,则a,b,c的大小关系为()A B.C. D.8.若向量满足:则A.2 B.C.1 D.9.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为10.若实数,满足,则的最小值是()A.18 B.9C.6 D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若命题“,”为假命题,则实数的取值范围为______.12.函数的部分图象如图所示,则函数的解析式为________.13.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.14.已知=-5,那么tanα=________.15.已知正四棱锥的高为4,侧棱长为3,则该棱锥的侧面积为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围17.已知集合,(1)当m=5时,求A∩B,;(2)若,求实数m取值范围18.已知函数(1)求f(x)的最小正周期及单调递减区间;(2)若f(x)在区间上的最小值为1,求m的最小值19.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.20.如图,在长方体中,,,是与的交点.求证:(1)平面(2)求与的所成角的正弦值.21.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.2、A【解析】利用同角三角函数平方关系,诱导公式,二倍角公式进行求解.【详解】故选:A3、B【解析】由偶函数在区间上单调递减,且,所以在区间上单调递增,且,即函数对应的图象如图所示,则不等式等价为或,解得或,故选B考点:不等关系式的求解【方法点晴】本题主要考查了与函数有关的不等式的求解,其中解答中涉及到函数的奇偶性、函数的单调性,以及函数的图象与性质、不等式的求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能,以及推理与运算能力,试题比较基础,属于基础题,本题的解得中利用函数的奇偶性和单调性,正确作出函数的图象是解答的关键4、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C5、D【解析】利用垂径定理可求弦长.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,故弦长为:,故选:D.6、D【解析】如图,,选D.7、A【解析】比较a,b,c的值与中间值0和1的大小即可﹒【详解】,,所以,故选:A.8、B【解析】由题意易知:即,,即.故选B.考点:向量的数量积的应用.9、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.10、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】命题为假命题时,二次方程无实数解,据此可求a的范围.【详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.12、【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键13、③⑤【解析】对每一个命题逐一判断得解.【详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【点睛】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.14、-【解析】由已知得=-5,化简即得解.【详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【点睛】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.15、【解析】由高和侧棱求侧棱在底面射影长,得底面边长,从而可求得斜高,可得侧面积【详解】如图,正四棱锥,是高,是中点,则是斜高,由已知,,则,是正方形,∴,,,侧面积侧故答案为:【点睛】关键点点睛:本题考查求正棱锥的侧面积.在正棱锥计算中,解题关键是掌握四个直角三角形:如解析中图中,正棱锥的几乎所有量在这四个直角三角形中都有反应三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是17、(1),(2)【解析】(1)根据集合的交集、并集运算即得解;(2)转化为,分,两种情况讨论,列出不等式控制范围,求解即可【小问1详解】(1)当时,可得集合,,根据集合的运算,得,.【小问2详解】解:由,可得,①当时,可得,解得;②当时,则满足,解得,综上实数的取值范围是.18、(1).,

(2)【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)利用正弦型函数的性质的应用求出结果【详解】(1)由题意,函数,==,所以的最小正周期:由,解得即函数的单调递减区间是

(2)由(1)知,因为,所以要使f(x)在区间上的最小值为1,即在区间上的最小值为-1所以,即所以m的最小值为【点睛】本题考查了三角函数关系式的变换,正弦型函数的性质的应用,其中解答中熟练应用三角函数的图象与性质,准确运算是解答的关键,着重考查了运算能力和转换能力及思维能力,属于基础题型19、【解析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【点睛】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用20、(1)见解析;(2)【解析】(1)根据长方体的性质,侧棱平行且相等,利用平行四边形判定及性质,推出线线平行,再证线面平行;(2)由(1),取平行线,即可求解异面直线所成角的平面角,再求正弦值.【详解】(1)连结交于点,连结,,,,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论