版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣州市会昌中学高一数学第二学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.2.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.4.数列1,,,…,的前n项和为A. B. C. D.5.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.6.如图,已知矩形中,,,该矩形所在的平面内一点满足,记,,,则()A.存在点,使得 B.存在点,使得C.对任意的点,有 D.对任意的点,有7.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”8.对任意实数x,表示不超过x的最大整数,如,,关于函数,有下列命题:①是周期函数;②是偶函数;③函数的值域为;④函数在区间内有两个不同的零点,其中正确的命题为()A.①③ B.②④ C.①②③ D.①②④9.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面10.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则12.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.13.数列满足,(且),则数列的通项公式为________.14.在空间直角坐标系中,点关于原点的对称点的坐标为______.15.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。16.中,内角,,所对的边分别是,,,且,,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是公差不为0的等差数列,成等比数列.(1)求;(2)设,数列的前n项和为,求18.如图,三棱锥中,,、、、分别是、、、的中点.(1)证明:平面;(2)证明:四边形是菱形19.已知点,圆.(1)求过点的圆的切线方程;(2)若直线与圆相交于、两点,且弦的长为,求的值.20.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().21.解下列三角方程:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【题目详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【题目点拨】本题考查直线与圆的位置关系,属于基础题。2、D【解题分析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【题目详解】因为,所以向右平移个单位即可得到的图象.故选:D.【题目点拨】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.3、B【解题分析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.4、B【解题分析】
数列为,则所以前n项和为.故选B5、A【解题分析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【题目详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【题目点拨】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.6、C【解题分析】以为原点,以所在直线为轴、轴建立坐标系,则,,且在矩形内,可设,,,,,,错误,正确,,,错误,错误,故选C.【方法点睛】本题主要考查平面向量数量积公式的坐标表示,属于中档题.平面向量数量积公式有两种形式,一是几何形式,,二是坐标形式,(求最值问题与求范围问题往往运用坐标形式),主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).7、C【解题分析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【题目详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【题目点拨】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.8、A【解题分析】
根据的表达式,结合函数的周期性,奇偶性和值域分别进行判断即可得到结论.【题目详解】是周期函数,3是它的一个周期,故①正确.,结合函数的周期性可得函数的值域为,则函数不是偶函数,故②错误.,故在区间内有3个不同的零点,故④错误.故选:A【题目点拨】本题考查了取整函数综合问题,考查了学习综合分析,转化与划归,数学运算的能力,属于难题.9、D【解题分析】
当时与相交,当时与异面.【题目详解】当时与相交,当时与异面.故答案为D【题目点拨】本题考查了直线的位置关系,属于基础题型.10、C【解题分析】
根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【题目详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【题目点拨】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、28【解题分析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算12、0.4【解题分析】
根据几何概型的计算,反求阴影部分的面积即可.【题目详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【题目点拨】本题考查几何概型的概率计算公式,属基础题.13、【解题分析】
利用累加法和裂项求和得到答案.【题目详解】当时满足故答案为【题目点拨】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.14、【解题分析】
利用空间直角坐标系中,关于原点对称的点的坐标特征解答即可.【题目详解】在空间直角坐标系中,关于原点对称的点的坐标对应互为相反数,所以点关于原点的对称点的坐标为.故答案为:【题目点拨】本题主要考查空间直角坐标系中对称点的特点,意在考查学生对该知识的理解掌握水平,属于基础题.15、乙【解题分析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.16、4【解题分析】
利用余弦定理变形可得,从而求得结果.【题目详解】由余弦定理得:本题正确结果:【题目点拨】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据已知条件求出,再写出等差数列的通项得解;(2)利用分组求和求.【题目详解】解:(1)设数列的首项为,公差为,则.因为成等比数列,所以,化简得又因为,所以,又因为,所以.所以.(2)根据(1)可知,【题目点拨】本题主要考查等差数列通项的求法,考查等差等比数列前n项和的计算和分组求和,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)证明见解析;(2)证明见解析【解题分析】
(1)根据等腰三角形的性质,证得,由此证得平面.(2)先根据三角形中位线和平行公理,证得四边形为平行四边形,再根据已知,证得,由此证得四边形是菱形.【题目详解】解(1)因为,是的中点,所以因为,是的中点,所以又,平面,平面所以平面(2)因为、分别是、的中点所以且同理且所以且,即四边形为平行四边形又,所以所以四边形是菱形.【题目点拨】本小题主要考查线面垂直的证明,考查证明四边形是菱形的方法,考查等腰三角形的性质以及三角形中位线的性质,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)或;(2)【解题分析】分析:(1)根据点到直线的距离等于半径进行求解即可,注意分直线斜率不存在和斜率存在两种情况;(2)根据直线和圆相交时的弦长公式进行求解.详解:(1)由圆的方程得到圆心,半径,当直线斜率不存在时,方程与圆相切,当直线斜率存在时,设方程为,即,由题意得:,解得,∴方程为,即,则过点的切线方程为或.(2)∵圆心到直线的距离为,∴,解得:.点睛:本题主要考查直线和圆的位置关系的应用,根据直线和圆相切和相交时的弦长公式是解决本题的关键.20、(Ⅰ),,(Ⅱ)见解析【解题分析】
(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【题目详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【题目点拨】本题主要考查了利用和的关系以及构造法求数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版铝型材产品研发与市场推广合作协议4篇
- 二零二五版房产买卖合同公证与风险评估报告3篇
- 二零二五年度医院员工劳动争议处理与调解合同4篇
- 二零二五年度大型商场智能门禁系统装修合同正本规范版2篇
- 2025年度绿色生态工程苗木供应合同范本4篇
- 二零二五年度创业项目合作协议范本4篇
- 二零二五版建筑工程内部承包合同(装配式)2篇
- 2025年度地质勘探测绘技术合作协议4篇
- 2025年度产学研合作开发合同:5G通信技术与应用4篇
- 2025年铜杆原材料采购及风险评估合同3篇
- 2025年中国高纯生铁行业政策、市场规模及投资前景研究报告(智研咨询发布)
- 湖北省黄石市阳新县2024-2025学年八年级上学期数学期末考试题 含答案
- 2022-2024年浙江中考英语试题汇编:完形填空(学生版)
- 2025年广东省广州市荔湾区各街道办事处招聘90人历年高频重点提升(共500题)附带答案详解
- 中试部培训资料
- 硝化棉是天然纤维素硝化棉制造行业分析报告
- 央视网2025亚冬会营销方案
- 北师大版数学三年级下册竖式计算题100道
- 计算机网络技术全套教学课件
- 《无砟轨道施工与组织》 课件 第十讲双块式无砟轨道施工工艺
- 屋顶分布式光伏发电项目施工重点难点分析及应对措施
评论
0/150
提交评论