




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰市2022年中考数学真题
一、单选题
1.(2022・赤峰)一5的绝对值是()
11
A.B.-5C.D.5
55
2.(2022・赤峰)下列图案中,不是轴对称图形的是()
3.(2022・赤峰)同种液体,压强随着深度增加而增大.7km深处海水的压强为72100000pa,数据
72100000用科学记数法表示为()
A.7.21X106B.0.721X108C.7.21X107D.721X105
4.(2022•赤峰)解不等式组时,不等式①、②的解集在同一数轴上表示正确的是()
6.(2022•赤峰)如图,点4(2,1),将线段。4先向上平移2个单位长度,再向左平移3个单位长度,
得到线段。%',则点力的对应点4的坐标是()
C.(-1,3)D.(3,-1)
7.(2022•赤峰)下列运算正确的是()
A.a3+a2=a5B.a2-a3=a6
C.2a-3a2=6a3D.(—a4)3=—a7
8.(2022・赤峰)下列说法正确的是()
A.调查某班学生的视力情况适合采用随机抽样调查的方法
B.声音在真空中传播的概率是100%
C.甲、乙两名射击运动员10次射击成绩的方差分别是S%=2.4,S:=1.4,则甲的射击成绩比乙
的射击成绩稳定
D.8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中
位数和众数分别是4和5
9.(2022,赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,
其中一张纸条在转动过程中,下列结论一定成立的是()
D,C
A.四边形ABCD周长不变B.AD=CD
C.四边形ABC。面积不变D.AD=BC
10.(2022•赤峰)某中学对学生最喜欢的课外活动进行了随机抽样调查,要求每人只能选择其中的一
项.根据得到的数据,绘制的不完整统计图如下,则下列说法中错误的是()
B.全校1600名学生中,估计最喜欢体育课外活动的大约有50()人
C.扇形统计图中,科技部分所对应的圆心角是36。
D.被调查的学生中,最喜欢艺术课外活动的有50人
11.(2022•赤峰)已知(x+2)(x-2)-2%=1,贝屹%2-4x+3的值为()
A.13B.8C.-3D.5
12.(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长
为()
A.10cmB.20cmC.5cmD.24cm
13.(2022•赤峰)如图,菱形ABC。,点A、B、C、。均在坐标轴上,^ABC=120°,点力(一3,0),点
E是CD的中点,点P是0C上的一动点,则PD+PE的最小值是()
A.3B.5C.2V2D.|5/3
二、解答题
14.(2022.赤峰)如图,4B是。。的直径,将弦ZC绕点4顺时针旋转30。得到2D,此时点C的对应点。落
在上,延长CD,交。。于点E,若CE=4,则图中阴影部分的面积为()
A.2兀B.2^2C.2兀一4D.2兀一2夜
15.(2022•赤峰)先化简,再求值:(1+若;)+/万,其中a=(}T一弼+4cos45。.
16.(2022•赤峰)如图,已知RtAABC中,Z.ACB=90°,AB=8,BC=5.
(1)作BC的垂直平分线,分别交28、BC于点。、H;(要求:尺规作图,不写作法,保留作图痕
迹)
(2)在(1)的条件下,连接CD,求△BC。的周长.
17.(2022•赤峰)为了解青少年健康状况,某班对50名学生的体育达标情况进行了测试,满分为50
分.根据测试成绩,绘制出不完整的频数分布表和不完整的频数分布直方图如下:
组别成绩》(分)频数(人数)
第一组5<x<151
第二组15<%<255
第三组25<%<3512
第四组35<x<45m
第五组45<%<5514
(1)求表中m的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于35分为达标,则本次测试的达标率是多少?
(4)第三组12名学生中有A、B、C、D四名女生,现将这12名学生平均分成两组进行竞赛练习,
每组两名女生,请用画树状图法或列表法求B、C两名女生分在同一组的概率.
18.(2022•赤峰)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗
木的数量比B种苗木的数量的一半多600株.
(1)请问A、B两种苗木各多少株?
(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种
苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?
19.(2022・赤峰)阅读下列材料
定义运算:min|a,b|,当a2b时,min|a,b|=6;当。<b时,min|a,b|=a.例如:min|—1,3|=
-1;min|-1,-2|=—2.
完成下列任务
(1)①min|(—3)°,2|=;@min|-V14,-4|=
(2)如图,已知反比例函数=[和一次函数为=-2x+b的图像交于A、B两点.当—2<%<0时,
min|^,-2x+b\=(x+1)(%-3)-%2.求这两个函数的解析式.
20.(2022•赤峰)如图,已知为。。的直径,点C为。。外一点,AC=BC,连接OC,DF是47的垂
直平分线,交OC于点尸,垂足为点E,连接4。、CD,H.Z.DCA=Z.OCA.
(1)求证:40是。。的切线;
(2)若CD=6,OF=4,求COS4ZMC的值.
21.(2022•赤峰)【生活情境】
为美化校园环境,某学校根据地形情况,要对景观带中一个长4D=4m,宽=1机的长方形水
池/BCD进行加长改造(如图①,改造后的水池4BNM仍为长方形,以下简称水池1),同时,再建造
一个周长为12m的矩形水池EFGH(如图②,以下简称水池2).
Ei--------------------------
水池2
尸I-----------------------IG
图②
【建立模型】
如果设水池4BCD的边4。加长长度DM为x(m)(x>0),加长后水池1的总面积为丁式血2),则以关
于%的函数解析式为:yt=x+4(x>0):设水池2的边EF的长为%(6)(0<%<6),面积为为(>2),
2
则丫2关于"的函数解析式为:y2=-x+6x(0<x<6),上述两个函数在同一平面直角坐标系中的图
像如图③.
【问题解决】
(1)若水池2的面积随EF长度的增加而减小,贝UE尸长度的取值范围是(可省略单
位),水池2面积的最大值是62;
(2)在图③字母标注的点中,表示两个水池面积相等的点是,此时的支(m)值
是;
(3)当水池1的面积大于水池2的面积时,》(徵)的取值范围是;
(4)在l<x<4范围内,求两个水池面积差的最大值和此时x的值;
(5)假设水池4BCD的边4。的长度为b(m),其他条件不变(这个加长改造后的新水池简称水池3),
则水池3的总面积、3(m2)关于久(血)0>0)的函数解析式为:y3=%+&(%>0).若水池3与水池2
的面积相等时,x(m)有唯一值,求b的值.
22.(2022•赤峰)同学们还记得吗?图①、图②是人教版八年级下册教材“实验与探究”中我们研究过
的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:
图①图②
(1)【问题一】如图①,正方形ABCD的对角线相交于点。,点。又是正方形&B1C10的一个顶点,
04交4B于点E,0Q交BC于点F,贝必E与8F的数量关系为;
(2)【问题二】受图①启发,兴趣小组画出了图③:直线血、n经过正方形48CD的对称中心。,
直线M分别与A。、BC交于点E、F,直线n分别与4B、交于点G、H,且m1几,若正方形ABCD边
长为8,求四边形。瓦4G的面积;
(3)【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG的顶点G在正方形/BCD的边CD
上,顶点E在的延长线上,且BC=6,CE=2.在直线BE上是否存在点P,使A4PF为直角三角形?
图④
三、填空题
23.(2022•赤峰)分解因式:2/+4x2+2x=.
24.(2022・赤峰)已知王强家、体育场、学校在同一直线上,下面的图像反映的过程是:某天早晨,
王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中X表示时间,
y表示王强离家的距离.则下列结论正确的是.(填写所有正确结论的序号)
①体育场离王强家2.5km
②王强在体育场锻炼了30min
③王强吃早餐用了20min
④王强骑自行车的平均速度是0.2km/7nin
25.(2022•赤峰)如图,为了测量校园内旗杆AB的高度,九年级数学应用实践小组,根据光的反射
定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点。处,然后观测者沿着
水平直线BO后退到点D,这时恰好能在镜子里看到旗杆顶点A,此时测得观测者观看镜子的俯角
a=60。,观测者眼睛与地面距离CD=1.7m,BD=llm,则旗杆AB的高度约为m.(结果取整
数,g〜1.7)
26.(2022•赤峰)如图,抛物线y=-/一6%-5交工轴于4、B两点,交y轴于点C,点。(血,m+1)是
抛物线上的点,则点。关于直线AC的对称点的坐标为
答案解析部分
L【答案】D
【知识点】绝对值及有理数的绝对值
【解析】【解答】|—5|=5
故答案为:D.
【分析】根据绝对值的定义可得答案。
2.【答案】A
【知识点】轴对称图形
【解析】【解答】A不是轴对称图形;
B、C、D都是轴对称图形;
故答案为:A.
【分析】根据轴对称图形的定义可得答案。
3.【答案】C
【知识点】科学记数法一表示绝对值较大的数
【解析】【解答】72100000=7.21x107
故答案为:C.
【分析】根据科学记数法的一般式:axion,其中isa<10,n为正整数。
4.【答案】B
【知识点】在数轴上表示不等式组的解集
【解析】【解答】解:不等式组32的解集为一1<久43,
表示在同一数轴为____1,,
-103
故答案为:B.
【分析】先确定不等式组的解集,再在数轴上表示出来即可。
5.【答案】B
【知识点】简单儿何体的三视图
【解析】【解答】圆台的俯视图是一个同心圆环.
故答案为:B.
【分析】根据俯视图的定义可得答案。
6.【答案】C
【知识点】坐标与图形变化-平移
【解析】【解答】解:•••点A坐标为(2,1),
•••线段OA向h平移2个单位长度,再向左平移3个单位长度,点A的对应点A,的坐标为(2-3,1+2),
即(-1,3),
故答案为:C.
【分析】根据平移的性质可得答案。
7.【答案】C
【知识点】同底数事的乘法;合并同类项法则及应用;塞的乘方
【解析】【解答】解:A、a3和a?不是同类项,不能合并,该选项不符合题意;
B、a-a3=a5原式计算错误,该选项不符合题意;
C、2a•3a2=6a3正确,该选项符合题意;
D、(_&4)3=_凉2原式计算错误,该选项不符合题意;
故答案为:C.
【分析】根据整式的相关运算法则逐项计算即可。
8.【答案】D
【知识点】全面调查与抽样调查;分析数据的集中趋势
【解析】【解答】解:A、调查某班学生的视力情况适合采用普查的方法,故A不符合题意;
B、声音在真空中传播的概率是0,故B不符合题意;
C、甲、乙两名射击运动员10次射击成绩的方差分别是S%=2.4,S:=1.4,则乙的射击成绩比甲的
射击成绩稳定;故C不符合题意;
D、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位
数和众数分别是4和5;故D符合题意;
故答案为:D
[分析]根据相关概念逐项分析判断即可。
9.【答案】D
【知识点】平行四边形的判定与性质
【解析】【解答】解:由题意可知,,:AB//CD,AD//BC,
,四边形A8CD是平行四边形,
:.AD=BC-,故D符合题意;
随着一张纸条在转动过程中,40不一定等于CD,四边形ABC。周长、面积都会改变;故A、B、C不
符合题意;
故答案为:D
【分析】由题意可知,AB//CD,AD//BC,四边形ABCC是平行四边形,可得AD=BC。
10.【答案】B
【知识点】扇形统计图;折线统计图
【解析】【解答】①由折线统计图和扇形图可知:喜欢播音的人数是10人,占调查人数的5%,
这次调查的样本容量是l(N5%=20()(人),故A选项不符合题意;
②全校1600名学生中,估计最喜欢体育课外活动的大约有:1600x患=400(人)故B选项符合题
意;
③被调查的学生中,最喜欢艺术课外活动的有200x25%=5()(人)
可以算出喜欢科技的人数为:200-50-50-10-70=20人
.•.扇形统计图中,科技部分所对应的圆心角是襦x360°=36°,故C不符合题意;
④被调查的学生中,最喜欢艺术课外活动的有200X25%=50(人)故D不符合题意;
故答案为:B
【分析】根据统计图逐项判断分析即可。
11.【答案】A
【知识点】利用整式的混合运算化简求值
【解析】【解答】;(%+2)。-2)-2%=1
.'.%2—2%=5
:.2x2-4x+3=2(/-2x)+3=13
故答案为:A.
【分析】根据(x+2)(x—2)—2x=1可得N一2%=5,将原式变形为2(——2x)+3,代入计算即可。
12.【答案】D
【知识点】圆锥的计算
【解析】【解答】解:根据题意,
圆锥形烟囱帽的底面周长为:2兀'12=24兀;
•••圆锥的侧面展开图为半圆形,
・Cd180-7T-/?
••24〃=F-
:.R=24;
,它的母线长为24cm;
故答案为:D
【分析】先求出圆锥形烟囱帽的底面周长,再根据圆锥的侧面展开图为半圆形,由弧长公式求出半径,
即可得母线长。
13.【答案】A
【知识点】线段的性质:两点之间线段最短;菱形的性质;轴对称的应用-最短距离问题
【解析】【解答】如图:连接BE,
:菱形ABCD,
...B、D关于直线AC对称,
•.•直线AC上的动点P到E、D两定点距离之和最小
根据“将军饮马”模型可知BE长度即是PD+PE的最小值.,
•.,菱形ABCD,N4BC=120。,点4(—3,0),
.,.Z.CDB=60°,Z.DAO=30°,OA=3,
:,OD=V3,AD=DC=CB=2y13
/.△CDB是等边三角形
:.BD=2V3
:点E是CD的中点,
-'-DE=^CD=V3,且BE_LCD,
BE=VBD2-DE2=3
故答案为:A.
【分析】连接BE,根据题意可得,B、D关于直线AC对称,直线AC上的动点P到E、D两定点距
离之和最小,根据“将军饮马”模型可知BE长度即是PD+PE的最小值,根据菱形的性质求出BE的长
即可。
14.【答案】C
【知识点】三角形的面积;勾股定理;垂径定理;扇形面积的计算;旋转的性质
【解析】【解答】解:如图,连接OE,0C,过点O作OF_LCE于点F,
11
则EF="E=>4=2,
由旋转得,AC=AD,
:.ZADC=/.ACD,
=30°,
/.ZADC=/.ACD=|x(180°-30°)=75。,
/.ZAOE=2Z.ACD=150°
:,NEOD=30°,
又NOED+乙EOD=AODC=75°,
,NOED=75°-乙EOD=75°-30°=45°,
二/EOF=LOEF=45°,
:.0F=EF=2
;.0E=>JOF2+EF2=V22+22=2VL
":0E=OC
:.ZOEC=乙OFE=45°
:.ZEOC=90°
•c_cc_90皿2々)21一r_).
,•S阴影-S扇形EOF—SAEOF~-Z360-2X4x2—2兀一4.
故答案为:C.
【分析】连接OE,OC,过点。作OFLCE于点F,5IIJFF=|CE=1x4=2,证明AEOC是等腰直
角三角形,根据S阳影=S扇形EOF—S/E0F即可求出答案。
15.【答案】解:(1+磊0+意五
_Q+1+2a—1.a
a+1(CL-l)(a+l)
__3a_(Q-1)(Q+1)
a4-1xa
=3a—3;
"-"a=(5T-V8+4cos45°=2-2夜+4*?=2,
把a=2代入,得
原式=3x2-3=3.
【知识点】实数的运算;利用分式运算化简求值
【解析】【分析】先将原式进行化简,再计算求出a,再将a的值代入计算即可。
16.【答案】(1)解:如图所示,点D、H即为所求
(2)解::DH垂直平分BC
,DC=DB,
ZB=ZDCB
AZB+ZA=90°,ZDCB+ZDCA=90°
.\ZA=ZDCA
.\DC=DA
/.△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13。
【知识点】三角形的面积;勾股定理;平行线分线段成比例;作图-线段垂直平分线
【解析】【分析】(1)利用基本作图,作BC的垂直平分线即可;
(2)根据线段垂直平分线的性质可得DC=DB,再证乙4=/DC4则DC=DA,即可求得△BCD的周
长。
17.【答案】(1)解:表中m的值是:
m=50-1-5-12-14=18;
(2)解:频数分布直方图补充完整如下:
答:本次测试的达标率是64%;
(4)解:根据题意画树状图如下:
开始
共有12种等可能情况,B、C两名女生分在同一组的情况有4种,
则他们同一组的概率为白=主
【知识点】频数(率)分布直方图;列表法与树状图法
【解析】【分析】(1)用总人数减去其余四组人数即可;
(2)利用第三组和第四组的聘书补全频数直方图;
(3)用第四组和第五组的频数和除以总人数得到本次测试的达标率;
(4)利用树状图求出B、C两名女生分在同一组的概率。
18.【答案】(1)解:设A苗木的数量是x棵,则B苗木的数量是y棵,
%+y=6000
根据题意可得:x=^y+600'
x=2400
解得:
y=3600'
答:A苗木的数量是2400棵,B苗木的数量是3600棵;
(2)解:设安排a人种植A苗木,则安排(350-a)人种植B苗木,
2400_3600
根据题意可得:
-W—30(350-ay
解得,a=100,
经检验,a=100是原方程的解,
/.350-a=250,
答:安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.
【知识点】二元一次方程组的其他应用;分式方程的实际应用
【解析】【分析】(1)设A苗木的数量是x棵,则B苗木的数量是y棵,根据题意列出方程组,解
之即可;
(2)设安排a人种植A苗木,则安排(350-a)人种植B苗木,根据题意列出分式方程,解之即可。
19.【答案】(1)1;-4
(2)解:由函数图象可知当一2cx<0时,—2x+b</,
x
k
,—2x+b\=—2x+b,
又•「mini1,-2x+=(%+1)(%—3)—%2,
**•-2x+b=(x+l)(x—3)—%2,
=—3,
,一次函数>2=一2%-3,
当x=-2时,y2=1,
AA(-2,1),
将A(—2,1)代入=(得k=—2x1=—2,
,反比例函数yi=4
【知识点】待定系数法求一次函数解析式;待定系数法求反比例函数解析式;定义新运算
【解析】【解答](1)解:根据题意,
'**min|a,b|,当a2b时,min|a,b\=bt当a<b时,min|a,b\—a)
,①min|(-3)。,2|=1;
•一V14>—4,
•**@min|-V14,-4|=-4;
故答案为:①1;0-4;
【分析】(1)根据定义运算法则解答即可;
(2)根据反比例函数和一次函数图象性质解答即可。
20.【答案】(1)证明::O为圆心,
,OA=OB,
VAC=BC,
-,-CO1AB,即NCOA=NCOB=90",
•;DF是AC的垂直平分线,
:.AD=CD,
=^DCA,
•:NDCA=Z.OCA,
:.ZDAC=乙OCA,
:-AD||OC,
:.ZDAO=/.COB=90%即4D1AB,
又AB是圆O的直径,
.••40是。。的切线;
(2)解:连接AF,如图,
c
由(l)知,AO=CD,AE=CE,
ZDCA=AOCA,DF1AC,
:.CD=CF,AF=AD.
••AF=AD=CD=CF=6,
在RMAOF中,AF=6,OF=4,AO24-OF2=AF2
.".AO=yjAF2+OF2=V62-42=2遮
在RM40C中,40=2倔CO=CF+OF=6+4=10,
AC2=AO2+OC2
-'-AC=y/AO2+OC2=J(2病尸+1。2=2同
.".AEAC=^30,
•c«八
•'COSZ.DAC=ccos"Zr*-DAEAE=而J3=0—g—
【知识点】平行线的判定与性质;线段垂直平分线的性质;勾股定理;切线的判定;锐角三角函数的定义
【解析】【分析】(1)利用等腰三角形三线合一,平行线的判断与性质和圆的的切线的判定定理解答
即可;
(2)利用权等三家性的判定与性质得到4F=AD=CD=CF=6,再利用直角三角形的边角关系定
理在RMA0C中求得coszOCZ,则可得结论。
21.【答案】(1)3<x<6;9
(2)C,E;1,4
(3)0<x<l或4Vx<6
(4)解:在1cx<4范围内,两个水池面积差M=(―/+6%)—(%+4)=—/+5%-4=—(%—
9
2+-
4
.-1<o,
・••函数有最大值,
V0<x<6
当x=|时,函数有最大值,为?,
即,当x=|时,面积最大值为:
(5)解:•.•水池3与水池2的面积相等,
/.%+b=—x2+6%,
整理得,%2—5x+h=0
••”(TH)有唯一值,
A4=(-5)2-4b=0
解得,6=竽
【知识点】二次函数丫=2*八2+bx+c的性质;二次函数的其他应用
【解析】【解答】(1):兀=—/+6%=—(x—3)2+9
•••抛物线的顶点坐标为(3,9),对称轴为x=3,
•.•水池2的面积随EF长度的增加而减小,
•♦.EF长度的取值范围是3<%<6;水池2面积的最大值是9m2;
故答案为:3<x<6;9;
(2)由图象得,两函数交于点C,E,
所以,表示两个水池面积相等的点是C,E;
联立方程组|"工4
(y=-%"4-6x
解得,露"春
••.X的值为1或4,
故答案为:C,E;1或4
(3)由(3)知,C(1,5),E(4,8),
又直线在抛物线上方时,0<久<1或4cx<6,
所以,水池1的面积大于水池2的面积时,%(6)的取值范围是0<%<1或4cx<6,
故答案为0<x<1或4<x<6;
【分析】(1)依据函数图象和函数解析式,利用二次凹函数的性质解答即可;
(2)利用图象交点的数字异议解答即可;
(3)依据图象,利用数形结合发解答即可;
(4)在1<x<4范围内,求得两个水池面积差的解析式,利用二次函数性质解答即可;
(5)令y3=y2,得到关于x的一元二次方程,解△=()的方程可求出b。
22.【答案】(1)AE=BF
(2)解:过点0作MNII4B,交AD于点M,交BC于点N,作7R||40.交AB于点T,交CD于点
•.•点0是正方形ABCD的中心,
11
.'.AT=T0=0M=MA=^AB=^AD,
又/A=90°
•••四边形ATOM是正方形,
:正方形ATOM=aS正方形ABCD=4AB2=16
同(1)可证△OMESAOTG.
:四边形AEGG=$正方形MOM=16
(3)解:,四边形ABCD,CEFG均为正方形,
.".AB=BC=CD=DA=6,CE=EF=FG=GC=2,NB==^ADC=4EFG=90°,
•.•CG在CD上,
:.DG=DC-CG=6-2=4,
又CE在BC的延长线上,
:,BE=BC+CE=6+2=8,
设BP=x,则PE=8一%,
在RtA4BP中,AP2=AB2+BP2=36+x2,
在RMFPE中,FP2=PE2+EF2=(8-x)2+22=x2-16%+68
延长AD,CE交于点Q,则四边形DQFG是矩形,
:.QF=DG=4,DQ=GF=2,
•*AQ—AD+DQ=6+2=8.)
在RtzL4QF中,AF2=AQ2+QF2=82+42=80,
若△APF为直角三角形,则有,
AP2+PF2=AF2,即36+x2+x2-16x+68=80.
整理得,x2-8x+12=0,
解得,x1=6,%2=2.
:.BP=6或BP=2.
【知识点】三角形全等及其性质;勾股定理;正方形的性质
【解析】【解答】(1),•四边形ABCD是正方形,
二ZBAD=/.ABC=90°
"."AC,是对角线,
11
:.NBAO="BAD,Z.OBF=^ABC,AC=BD,
ii
:.ZBAO=Z.OBC,AO=BO=^AC=^BD,Z.AOB=90°,
:四边形481cl。是正方形,
.•.N&OCi=90°,
.'.ZAiOB+ABOCr=90°
又NAO&+"1OB=90°
AZ.AOE=乙BOF,
:.AAOE^ABOF
:.AE=BF
故答案为:AE=BF
【分析】(1)利用ASA判断出4A0E三ABOF,即可得答案;
(2)过点O作MN||4B,交AD于点M,交BC于点N,作77?||AD.交AB于点T,交CD于点R,
证明四边形ATOM是正方形,S/E/捌TOM=扣〃;方%BCD=制1=16,同(1)可证△OMEW/OTG.
则S儆媛4EOG=S正方形MOM=16;
(3)根据正方形的性质可得BE=BC+CE=6+2=8,设BP=%,则PE=8-%,根据勾股定理
2222
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 收纳师考试的评分标准试题及答案
- 江苏省苏州市2024学年高中英语 Unit3 Amazing people The curse of the mummy talk show公开课教学设计
- 每日一练的小自考汉语言试题及答案
- 质量控制的统计师考试试题及答案
- 2024年小自考视觉传播设计设计工具试题及答案
- 物理网课考试题及答案
- 第十章 第3节 物体的浮尘条件及应用(教学设计)2024-2025学年人教版(2024)物理八年级下册
- 山东小学奥数试题及答案
- 2024年CPBA考试重难点试题及答案
- 2024年小自考行政管理学科考点试题
- 人教版四年级英语下册教学课件-四下recycle1 第一课时
- 职业教育数字化转型
- 2024年电子商务新兴业态探讨试题及答案
- 亮化工程售后服务方案及优惠承诺
- 2025年中考道德与法治专题复习:非选择题答题指导与答题模板 课件67张
- 物业服务礼仪礼貌培训七大要点
- 2025-2030中国儿童服装行业深度调研及投资前景预测研究报告
- 2025年温州职业技术学院单招职业技能考试题库必考题
- 2025年高考物理模拟试卷1(广东卷)及答案
- 《颅内血肿教学查房》课件
- 2025新人教版七下英语单词默写表
评论
0/150
提交评论