版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市2024届数学高一第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(其中为自然对数的底数)的图象大致为()A. B. C. D.2.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④4.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A.92% B.24% C.56% D.76%5.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B. C. D.6.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解7.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水8.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.9.命题“”的否定是()A., B.,C., D.,10.已知向量,且,则()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量a=(2,-4),b=(-3,-4),则向量a与12.在数列中,,,则________.13.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.14.函数的值域为________.15.已知向量,则___________.16.在中,,,,则的面积是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?18.已知数列的前项和为,且2,,成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和;19.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.20.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.21.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由题意,可知,即为奇函数,排除,,又时,,可排除D,即可选出正确答案.【题目详解】由题意,函数定义域为,且,即为奇函数,排除,,当时,,,即时,,可排除D,故选C.【题目点拨】本题考查了函数图象的识别,考查了函数奇偶性的运用,属于中档题.2、D【解题分析】
由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【题目详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【题目点拨】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.3、C【解题分析】
根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【题目详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【题目点拨】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.4、C【解题分析】试题分析:.故C正确.考点:频率分布直方图.5、B【解题分析】
分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【题目详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,综上所述,圆柱的轴截面面积为,故选:B.【题目点拨】本题考查了圆柱轴截面面积的求法,属基础题.6、B【解题分析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.7、B【解题分析】
降水概率指的是降水的可能性,根据概率的意义作出判断即可.【题目详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【题目点拨】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.8、A【解题分析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【题目详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【题目点拨】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.9、B【解题分析】
含有一个量词的命题的否定,注意“改量词,否结论”.【题目详解】改为,改成,则有:.故选:B.【题目点拨】本题考查含一个量词的命题的否定,难度较易.10、B【解题分析】
根据向量平行得到,再利用和差公式计算得到答案.【题目详解】向量,且,则..故选:.【题目点拨】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】
先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y12、【解题分析】
由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【题目详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【题目点拨】本题考查数量的递推公式同时考查数列的周期性,属于中档题.13、或【解题分析】
分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【题目详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【题目点拨】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.14、【解题分析】
利用反三角函数的单调性即可求解.【题目详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【题目点拨】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.15、【解题分析】
根据向量夹角公式可求出结果.【题目详解】.【题目点拨】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.16、【解题分析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【题目详解】,过C作于D,则故答案为【题目点拨】本题考查了三角形面积计算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【题目详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【题目点拨】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.18、(1);(2)【解题分析】
(1)利用求解;(2)由(1)知,,差比数列,利用错位相减法求其前n项和.【题目详解】(1)由题意知成等差数列,所以①,可得②①-②得,又,,所以数列是以2为首项,2为公比的等比数列,.(2)由(1)可得,用错位相减法得:①②①-②可得.【题目点拨】已知与的关系式利用公式求解错位相减法求等差乘等比数列的前n项和.19、(1),值域为(2)【解题分析】
(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【题目详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【题目点拨】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.20、(Ⅰ)证明见解析;(Ⅱ).【解题分析】试题分析:(Ⅰ)只需证明,又由面面垂直的性质定理知平面;(Ⅱ)连接、,假设存在点,使得它到平面的距离为,设,由,求得的值即可.试题解析:(Ⅰ)证明:在中,为中点,所以.又侧面底面,平面平面,平面,所以平面.(Ⅱ)连接、假设存在点,使得它到平面的距离为.设,则因为,为的中点,所以,且所以因为,且所以在中,所以所以由,即解得所以存在点满足题意,此时.考点:1.平面与平面垂直的性质;2.几何体的体积.21、(1)详见解析(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《中国经济实力》课件
- 《全球订价策略》课件
- 2024年店面租赁合同样式
- 《谈判组织与管理》课件
- 中考地理总复习专题25 西北地区和青藏地区(梯级进阶练)(解析版)
- 《电路分析》课件第2章
- 2024年外墙装饰刷漆协议规范文本版A版
- 幼儿园食堂管理工作计划
- 2024年地方企业短期租车协议版B版
- 《电子技术基础-数字电子技术》课件第4章
- 安徽华塑股份有限公司年产 20 万吨固碱及烧碱深加工项目环境影响报告书
- 2020九年级英语上册全册Module1-12重点难点易错点整理新版外研版
- 城市市政公用设施规划
- GB/T 9239.1-2006机械振动恒态(刚性)转子平衡品质要求第1部分:规范与平衡允差的检验
- GB/T 3863-2008工业氧
- GB/T 26996-2011非正规教育与培训的学习服务学习服务提供者基本要求
- 财会数码字书写规范素材
- 语文六年级上册期末易读错写错字汇总
- 药剂学 第十三章-皮肤递药制剂
- 血液透析患者护理查房教学课件
- DB4403T264-2022消防设施物联网系统技术要求-(高清正版)
评论
0/150
提交评论