2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题含解析_第1页
2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题含解析_第2页
2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题含解析_第3页
2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题含解析_第4页
2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省重点中学数学高一第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则()A. B. C. D.2.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.3.直线在轴上的截距为()A. B. C. D.4.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}5.已知向量、满足,且,则为()A. B.6 C.3 D.6.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.中国古代的“礼”“乐”“射”“御”“书”“数”合称“六艺”.某校国学社团准备于周六上午9点分别在6个教室开展这六门课程讲座,每位同学只能选择一门课程,则甲乙两人至少有人选择“礼”的概率是()A. B. C. D.8.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.9.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.10.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则M与N的大小关系为___________.12.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.13.若关于的不等式的解集为,则__________14.在等比数列中,,,则__________.15.已知与之间的一组数据,则与的线性回归方程必过点__________.16.若在区间(且)上至少含有30个零点,则的最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)18.已知是递增的等比数列,且,.(1)求数列的通项公式;(2)为各项非零的等差数列,其前n项和为,已知,求数列的前n项和.19.已知函数.(1)求函数的最小正周期;(2)求函数的单调递增区间.20.已知向量,且(1)当时,求及的值;(2)若函数的最小值是,求实数的值.21.已知圆经过点.(1)若直线与圆相切,求的值;(2)若圆与圆无公共点,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

利用诱导公式得到的值,再由同角三角函数的平方关系,结合角的范围,即可得答案.【题目详解】∵,又,∴.故选:B.【题目点拨】本题考查诱导公式、同角三角函数的平方关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意符号问题.2、B【解题分析】

解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=43、A【解题分析】

取计算得到答案.【题目详解】直线在轴上的截距:取故答案选A【题目点拨】本题考查了直线的截距,属于简单题.4、C【解题分析】

根据并集的运算律可计算出集合A∪B.【题目详解】∵A=xx≥-3,B=x故选:C.【题目点拨】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.5、A【解题分析】

先由可得,即可求得,再对平方处理,进而求解【题目详解】因为,所以,则,所以,则,故选:A【题目点拨】本题考查向量的模,考查向量垂直的数量积表示,考查运算能力6、B【解题分析】

由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【题目详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【题目点拨】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.7、D【解题分析】

甲乙两人至少有人选择“礼”的对立事件是甲乙两人都不选择“礼”,求出后者的概率即可【题目详解】由题意,甲和乙不选择“礼”的概率是,且相互独立所以甲乙两人都不选择“礼”的概率是所以甲乙两人至少有人选择“礼”的概率是故选:D【题目点拨】当遇到“至多”“至少”型题目时,一般用间接法求会比较简单,即先求出此事件的对立事件的概率,然后即可得出原事件的概率.8、B【解题分析】试题分析:由正弦定理得31考点:正弦定理的应用9、B【解题分析】

利用椭圆的性质列出不等式求解即可.【题目详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【题目点拨】本题考查椭圆的方程及简单性质的应用,基本知识的考查.10、C【解题分析】

利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【题目详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【题目点拨】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据自变量的取值范围,利用作差法即可比较大小.【题目详解】,,,所以当时,所以,即,故答案为:.【题目点拨】本题考查了作差法比较整式的大小,属于基础题.12、【解题分析】

设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【题目详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【题目点拨】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.13、1【解题分析】

根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【题目详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【题目点拨】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.14、8【解题分析】

可先计算出公比,从而利用求得结果.【题目详解】因为,所以,所以,则.【题目点拨】本题主要考查等比数列基本量的相关计算,难度很小.15、【解题分析】

根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【题目详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【题目点拨】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.16、【解题分析】

首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【题目详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【题目点拨】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)可根据单位圆定义求出,再由二倍角正弦公式即可求解;(2)先求出由可求得,结合反三角函数即可求得【题目详解】(1)由题可知:,,,;(2)由,,又,【题目点拨】本题考查单位圆的定义,二倍角公式的应用,两角差余弦公式的用法,属于中档题18、(1);(2)【解题分析】

(1){an}是递增的等比数列,公比设为q,由等比数列的中项性质,结合等比数列的通项公式解方程可得所求;(2)运用等差数列的求和公式和等差数列中项性质,求得bn=2n+1,再由数列的错位相减法求和,化简可得所求和.【题目详解】(1)∵是递增的等比数列,∴,,又,∴,是的两根,∴,,∴,.(2)∵,∴由已知得,∴∴,化简可得.【题目点拨】本题考查数列的通项和求和,等差等比数列的通项通常是列方程组解首项及公差(比),数列求和常见的方法有:裂项相消和错位相减法,考查计算能力,属于中等题.19、(1);(2).【解题分析】

(1)利用三角恒等变换思想得出,利用周期公式可计算出函数的最小正周期;(2)解不等式,即可得出函数的单调递增区间.【题目详解】(1),所以,函数的最小正周期为;(2)令,可得,因此,函数的单调递增区间为.【题目点拨】本题考查正弦型函数周期和单调区间的求解,解题的关键在于利用三角函数解析式化简,考查计算能力,属于中等题.20、(1),(2).【解题分析】

(1)以向量为载体求解向量数量积、模长,我们只需要把向量坐标表示出来,最后用公式就能轻松完成;(2)由(1)可以把表达式求出,最终化成二次复合型函数模式,考虑轴与区间的位置关系,我们就能对函数进行进一步的研究.【题目详解】(1)因为,所以又因为,所以(2),当时,.当时,不满足.当时,,,不满足.综上,实数的值为.【题目点拨】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.第二问中我们其实就是求最小值问题,当然掺杂了二次函数的“轴变区间定”的考点.,综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论