广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题含解析_第1页
广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题含解析_第2页
广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题含解析_第3页
广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题含解析_第4页
广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西钦州港经济技术开发区中学2024届高一数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2972.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.283.已知,,,则a,b,c的大小关系为()A. B. C. D.4.某快递公司在我市的三个门店,,分别位于一个三角形的三个顶点处,其中门店,与门店都相距,而门店位于门店的北偏东方向上,门店位于门店的北偏西方向上,则门店,间的距离为()A. B. C. D.5.在中,角的对边分别为,若,则形状是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形6.正方体中,直线与所成角的余弦值为()A. B. C. D.7.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.8.若是第四象限角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.设为实数,且,则下列不等式成立的是()A. B. C. D.10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则使得成立的的取值范围是_______________.12.函数的值域为______.13.数列满足,则数列的前6项和为_______.14.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.15.在等差数列中,,当最大时,的值是________.16.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.18.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.19.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.20.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.21.已知的三个内角,,的对边分别为,,,函数,且当时,取最大值.(1)若关于的方程,有解,求实数的取值范围;(2)若,且,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【题目详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【题目点拨】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.2、B【解题分析】

根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【题目详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【题目点拨】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.3、D【解题分析】

由,,,得解.【题目详解】解:因为,,,所以,故选:D.【题目点拨】本题考查了指数幂,对数值的大小关系,属基础题.4、C【解题分析】

根据题意,作出图形,结合图形利用正弦定理,即可求解,得到答案.【题目详解】如图所示,依题意知,,,由正弦定理得:,则.故选C.【题目点拨】本题主要考查了三角形的实际应用问题,其中解答中根据题意作出图形,合理使用正弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】

由,利用正弦定理化简可得sin2A=sin2B,由此可得结论.【题目详解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状是等腰三角形或直角三角形故选D.【题目点拨】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.6、C【解题分析】

作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【题目详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【题目点拨】本题主要考查异面直线所成角的余弦值,难度不大.7、C【解题分析】

根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【题目详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【题目点拨】本小题主要考查频数分析表的阅读与应用,属于基础题.8、C【解题分析】

利用象限角的表示即可求解.【题目详解】由是第四象限角,则,所以,所以是第三象限角.故选:C【题目点拨】本题考查了象限角的表示,属于基础题.9、C【解题分析】

本题首先可根据判断出项错误,然后令可判断出项和项错误,即可得出结果。【题目详解】因为,所以,故错;当时,,故错;当时,,故错,故选C。【题目点拨】本题考查不等式的基本性质,主要考查通过不等式性质与比较法来比较实数的大小,可借助取特殊值的方法来进行判断,是简单题。10、B【解题分析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【题目详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【题目点拨】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.12、【解题分析】

由反三角函数的性质得到,即可求得函数的值域.【题目详解】由,则,,又,,即,函数的值域为.故答案:.【题目点拨】本题考查反三角函数的性质及其应用,属于基础题.13、84【解题分析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【题目详解】因为,所以.【题目点拨】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.14、(2,4)【解题分析】

令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【题目详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【题目点拨】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.15、6或7【解题分析】

利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【题目详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【题目点拨】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.16、【解题分析】

将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【题目详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【题目点拨】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】

(1)根据与的关系,再结合等差数列的定义,即可证明;(2)由(1)可求出,采用裂项相消法求出,要恒成立,只需即可求出.【题目详解】(1)由题知:,当得:,解得:当,①②得:,即.是以为首项,为公差的等差数列.(2)由(1)知:所以即.【题目点拨】本题主要考查与的关系,等差数列的定义,裂项相消法以及恒成立问题的解法的应用,意在考查学生的数学运算能力,属于基础题.18、(1),;(2)真命题,证明见解析;(3).【解题分析】

(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【题目详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证明如下:①当时,则,,,此时,当时,;②当时,设,则,,,此时,当时,.综上所述,命题为真命题;(3)先证明:“”是“存在,当时,恒有成立”的充要条件.假设存在,使得“存在,当时,恒有成立”.则数列的前项为,,,,,,后面的项顺次为,,,,故对任意的,,对任意的,取,其中表示不超过的最大整数,则,令,则,此时,有,这与矛盾,故若存在,当时,恒有成立,必有;从而得证.另外:当时,数列为,故,则.【题目点拨】本题考查数列知识的应用,涉及到命题真假的判断,同时也考查了数列新定义问题,解题时要充分从题中数列的定义出发,充分利用分类讨论思想,综合性强,属于难题.19、(1)见解析;(2)【解题分析】

(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【题目详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【题目点拨】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.20、(1),;(2)【解题分析】

(1)由已知求得,可得,取即可求得;(2)由,得,可得数列是以为首项,以1为公差的等差数列,由此求得数列的通项公式,再由错位相减法求数列的前项和.【题目详解】解:(1),且,,,即.,取,得,即;(2)由,得,数列是以为首项,以为公差的等差数列,则.则.,,则,.【题目点拨】本题考查数列求和,训练了利用错位相减法求数列的前项和,属于中档题.21、(1);(2).【解题分析】

(1)利用两角和差的正弦公式整理可得:,再利用已知可得:(),结合已知可得:,求得:时,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论