版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省宜宾市普通高中数学高一第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.2.已知.为等比数列的前项和,若,,则()A.31 B.32 C.63 D.643.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.4.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等5.若,则下列不等式不成立的是()A. B. C. D.6.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.7.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.8.函数定义域是()A. B. C. D.9.已知点G为的重心,若,,则=()A. B. C. D.10.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,74二、填空题:本大题共6小题,每小题5分,共30分。11.函数()的值域是__________.12.若圆与圆的公共弦长为,则________.13.设,,,若,则实数的值为______14.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。15.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.16.已知角的终边经过点,则的值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.18.直线的方程为.(1)若在两坐标轴上的截距相等,求的值;(2)若不经过第二象限,求实数的取值范围.19.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.20.某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:(Ⅰ)按分层抽样的方法从单果直径落在,的苹果中随机抽取6个,则从,的苹果中各抽取几个?(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.21.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.2、C【解题分析】
首先根据题意求出和的值,再计算即可.【题目详解】有题知:,解得,.故选:C【题目点拨】本题主要考查等比数列的性质以及前项和的求法,属于简单题.3、C【解题分析】
根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【题目详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【题目点拨】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.4、C【解题分析】
由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【题目详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【题目点拨】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.5、B【解题分析】
根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【题目详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【题目点拨】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.6、B【解题分析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【题目详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【题目点拨】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.7、A【解题分析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【题目详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【题目点拨】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.8、A【解题分析】
若函数有意义,则需满足,进而求解即可【题目详解】由题,则,解得,故选:A【题目点拨】本题考查具体函数的定义域,属于基础题9、B【解题分析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【题目详解】设是中点,则,又为的重心,∴.故选B.【题目点拨】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.10、B【解题分析】(1);(2);(3);(4),输出分别为98,78。故选B。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【题目详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【题目点拨】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.12、【解题分析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.13、【解题分析】
根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【题目详解】故答案为:【题目点拨】本题考查向量垂直的坐标表示,属于基础题.14、80【解题分析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【题目详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【题目点拨】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】
直接利用长度型几何概型求解即可.【题目详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【题目点拨】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.16、【解题分析】
由题意和任意角的三角函数的定义求出的值即可.【题目详解】由题意得角的终边经过点,则,所以,故答案为.【题目点拨】本题考查任意角的三角函数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解题分析】
(1)利用即可证明;(2)由面面垂直的性质即可证明.【题目详解】证明:(1)在四棱锥中,底面是矩形,,又平面,平面;平面;(2)侧面底面,侧面平面,,平面,平面【题目点拨】本题考查了空间线面平行、垂直的证明,属于基础题.18、(1)0或2;(2).【解题分析】
(1)当过坐标原点时,可求得满足题意;当不过坐标原点时,可根据直线截距式,利用截距相等构造方程求得结果;(2)当时,可得直线不经过第二象限;当时,结合函数图象可知斜率为正,且在轴截距小于等于零,从而构造不等式组求得结果.【题目详解】(1)当过坐标原点时,,解得:,满足题意当不过坐标原点时,即时若,即时,,不符合题意若,即时,方程可整理为:,解得:综上所述:或(2)当,即时,,不经过第二象限,满足题意当,即时,方程可整理为:,解得:综上所述:的取值范围为:【题目点拨】本题考查直线方程的应用,涉及到直线截距式方程、由图象确定参数范围等知识;易错点是在截距相等时,忽略经过坐标原点的情况,造成丢根.19、(1),;(2)【解题分析】
(1)分别利用累加法、数列的递推公式得到数列和数列的通项公式.(2)利用数列求和的错位相减即可得到数列的前项和.【题目详解】(1),……,,以上个式子相加得:当时,=当时,,符合上式,(2)①②①-②得【题目点拨】已知求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前项和采用错位相减法.20、(Ⅰ)4个;(Ⅱ);(Ⅲ)方案是【解题分析】
(Ⅰ)单果直径落在,,,的苹果个数分别为6,12,分层抽样的方法从单果直径落在,,,的苹果中随机抽取6个,单果直径落在,,,的苹果分别抽取2个和4个;(Ⅱ)从这6个苹果中随机抽取2个,基本事件总数,这两个苹果单果直径均在,内包含的基本事件个数,由此能求出这两个苹果单果直径均在,内的概率;(Ⅲ)分别求出按方案与方案该合作农场收益,比较大小得结论.【题目详解】(Ⅰ)由茎叶图可知,单果直径落在,的苹果分别为6个,12个,依题意知抽样比为,所以单果直径落在的苹果抽取个数为个,单果直径落在的苹果抽取个数为个(Ⅱ)记单果直径落在的苹果为,,记单果直径落在的苹果为,若从这6个苹果中随机抽取2个,则所有可能结果为:,,,,,,,,,,,,,,,即基本事件的总数为15个.这两个苹果单果直径均落在内包含的基本事件个数为6个,所以这两个苹果单果直径均落在内的概率为.(Ⅲ)按方案:该合作农场收益为:(万元);按方案:依题意可知合作农场的果园共有万箱,即8000箱苹果,则该合作农场收益为:元,即为31.36万元因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题01 热爱生活 热爱写作+作文选材技巧-【同步作文课】六年级语文上册单元写作深度指导(统编版2024·五四学制)
- 幼儿园小班音乐《红眼睛》课件
- 西京学院《影像设备创新设计》2023-2024学年第一学期期末试卷
- 西京学院《数控技术与编程》2021-2022学年期末试卷
- 冰淇淋素描课件
- 核心制度课件
- 管理会计实务 课件情境3、4 谋而后定:企业战略执行的有效工具、做好企业的战略参谋官
- 西华师范大学《体育科学研究方法》2023-2024学年第一学期期末试卷
- 西华师范大学《科学教育学》2022-2023学年第一学期期末试卷
- 移动机器人原理与技术 课件 第7、8章 移动机器人语音识别与控制、移动机器人的通信系统
- (高级)信息通信网络运行管理员技能鉴定考试题库(附答案)
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 3.3《不简单的杠杆》课件
- 弗洛伊德生平及精神分析学说的发展历程
- 普通高中语文课程标准解读课件
- 招商引资面试题
- 二次离子质谱仪(SIMS)分析技术及其在半导体产业中的应用获奖科研报告
- 32气温的变化与分布课件
- 飞机机电设备维修
- 初中物理重点名词解释
- 综合医院组织编制原则(试行草案)
评论
0/150
提交评论