2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题含解析_第1页
2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题含解析_第2页
2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题含解析_第3页
2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题含解析_第4页
2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省林州一中分校数学高一下期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,,满足条件.,则A. B. C. D.2.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.3.已知,,,,则()A. B.C. D.4.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度5.在中,点是边上的靠近的三等分点,则()A. B.C. D.6.设,表示两条直线,,表示两个平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形8.已知各项均不为零的数列,定义向量,,.下列命题中真命题是()A.若对任意的,都有成立,则数列是等差数列B.若对任意的,都有成立,则数列是等比数列C.若对任意的,都有成立,则数列是等差数列D.若对任意的,都有成立,则数列是等比数列9.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().10.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.12.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.13.等比数列前n项和为,若,则______.14.在等比数列中,,,则_____.15.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______16.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前项和为,且.(I)求数列的通项公式;(II)设为数列的前项和,求.18.已知函数.(1)求的最小正周期.(2)求在区间上的最小值.19.(1)证明:;(2)证明:对任何正整数n,存在多项式函数,使得对所有实数x均成立,其中均为整数,当n为奇数时,,当n为偶数时,;(3)利用(2)的结论判断是否为有理数?20.近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)21.已知角终边上一点,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】向量,则,故解得.故答案为:C。2、C【解题分析】

利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【题目详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【题目点拨】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解题分析】

分别求出的值再带入即可.【题目详解】因为,所以因为,所以所以【题目点拨】本题考查两角差的余弦公式.属于基础题.4、D【解题分析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.5、A【解题分析】

将题中所体现的图形画出,可以很直观的判断向量的关系.【题目详解】如图有向量运算可以知道:,选择A【题目点拨】考查平面向量基本定理,利用好两向量加法的计算原则:首尾相连,首尾相接.6、D【解题分析】

对选项进行一一判断,选项D为面面垂直判定定理.【题目详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【题目点拨】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.7、A【解题分析】

将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【题目详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【题目点拨】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.8、A【解题分析】

根据向量平行的坐标表示,得到,利用累乘法,求得,从而可作出判定,得到答案.【题目详解】由题意知,向量,,,当时,可得,即,所以,所以数列表示首项为,公差为的等差数列.当,可得,即,所以,所以数列既不是等差数列,也不是等比数列.故选A.【题目点拨】本题主要考查了向量的平行关系的坐标表示,等差数列的定义,以及“累乘法”求解通项公式的应用,着重考查了推理与运算能力,属于基础题.9、D【解题分析】

利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【题目详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【题目点拨】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.10、B【解题分析】

分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【题目详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【题目点拨】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。二、填空题:本大题共6小题,每小题5分,共30分。11、0.4【解题分析】

根据几何概型的计算,反求阴影部分的面积即可.【题目详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【题目点拨】本题考查几何概型的概率计算公式,属基础题.12、【解题分析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【题目详解】.故答案为:2【题目点拨】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.13、【解题分析】

根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【题目详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【题目点拨】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.14、1【解题分析】

由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【题目详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【题目点拨】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.15、【解题分析】

首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【题目详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【题目点拨】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.16、①②④.【解题分析】

①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【题目详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【题目点拨】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解题分析】

(I)根据已知的两个条件求出公差d,即得数列的通项公式;(II)先求出,再利用裂项相消法求和得解.【题目详解】(I)由题得,所以等差数列的通项为;(II)因为,所以.【题目点拨】本题主要考查等差数列的通项的求法,考查等差数列前n项和基本量的计算,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2).【解题分析】试题分析:本题主要考查倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先利用倍角公式将降幂,再利用两角和的正弦公式将化简,使之化简成的形式,最后利用计算函数的最小正周期;(Ⅱ)将的取值范围代入,先求出的范围,再数形结合得到三角函数的最小值.试题解析:(Ⅰ)∵,∴的最小正周期为.(Ⅱ)∵,∴.当,即时,取得最小值.∴在区间上的最小值为.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.19、(1)见解析;(2)见解析;(3)不是【解题分析】

(1),利用两角和的正弦和二倍角公式,进行证明;(2)对分奇偶,即和两种情况,结合两角和的余弦公式,积化和差公式,利用数学归纳法进行证明;(3)根据(2)的结论,将表示出来,然后判断其每一项都为无理数,从而得到答案.【题目详解】(1)所以原式得证.(2)为奇数时,时,,其中,成立时,,其中,成立时,,其中,成立,则当时,所以得到因为均为整数,所以也均为整数,故原式成立;为偶数时,时,,其中,时,,其中,成立,时,,其中,成立,则当时,所以得到其中,因为均为整数,所以也均为整数,故原式成立;综上可得:对任何正整数,存在多项式函数,使得对所有实数均成立,其中,均为整数,当为奇数时,,当为偶数时,;(3)由(2)可得其中均为有理数,因为为无理数,所以均为无理数,故为无理数,所以不是有理数.【题目点拨】本题考查利三角函数的二倍角的余弦公式,积化和差公式,数学归纳法证明,属于难题.20、(1)(2)应安排名民工参与抢修,才能使总损失最小【解题分析】

(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论