江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题含解析_第1页
江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题含解析_第2页
江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题含解析_第3页
江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题含解析_第4页
江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市射阳中学2024届数学高一下期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c为实数,则下列结论正确的是()A.若ac>bc>0,则a>b B.若a>b>0,则ac>bcC.若ac2>bc2,则a>b D.若a>b,则ac2>bc22.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.3.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.4.已知数列的通项公式是,则等于()A.70 B.28 C.20 D.85.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-6.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数7.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获8.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.9.已知角的终边过点,则()A. B. C. D.10.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.12.数列an满足12a113.数列满足下列条件:,且对于任意正整数,恒有,则______.14.设无穷等比数列的公比为,若,则__________________.15._________________.16.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.18.如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.(1)要使矩形的面积大于64平方米,则的长应在什么范围内?(2)当的长为多少时,矩形花坛的面积最小?并求出最小值.19.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.20.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,21.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

本题可根据不等式的性质以及运用特殊值法进行代入排除即可得到正确结果.【题目详解】由题意,可知:对于A中,可设,很明显满足,但,所以选项A不正确;对于B中,因为不知道的正负情况,所以不能直接得出,所以选项B不正确;对于C中,因为,所以,所以,所以选项C正确;对于D中,若,则不能得到,所以选项D不正确.故选:C.【题目点拨】本题主要考查了不等式性质的应用以及特殊值法的应用,着重考查了推理能力,属于基础题.2、D【解题分析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【题目详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【题目点拨】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.3、B【解题分析】

如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【题目点拨】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.4、C【解题分析】

因为,所以,所以=20.故选C.5、D【解题分析】

利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【题目详解】依题意可知,所以,故选D.【题目点拨】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.6、A【解题分析】

判断函数函数,的奇偶性,求出其周期即可得到结论.【题目详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【题目点拨】本题考查正弦函数的奇偶性和周期性,属基础题.7、B【解题分析】

利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【题目详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【题目点拨】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.8、D【解题分析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.9、D【解题分析】

首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【题目详解】由已知得,则.故选D【题目点拨】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.10、C【解题分析】

设,得到,,,再利用举反例的方式排除③【题目详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【题目点拨】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先由题意得到,根据题意求出的最大值,即可得出结果.【题目详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【题目点拨】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.12、14,n=1【解题分析】

试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.13、512【解题分析】

直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【题目详解】故选C。【题目点拨】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。14、【解题分析】

由可知,算出用表示的极限,再利用性质计算得出即可.【题目详解】显然公比不为1,所以公比为的等比数列求和公式,且,故.此时当时,求和极限为,所以,故,所以,故,又,故.故答案为:.【题目点拨】本题主要考查等比数列求和公式,当时.15、3【解题分析】

分式上下为的二次多项式,故上下同除以进行分析.【题目详解】由题,,又,故.

故答案为:3.【题目点拨】本题考查了分式型多项式的极限问题,注意:当时,16、【解题分析】分析:分类讨论截距为0和截距不为零两种情况求解直线方程即可.详解:当截距为0时,直线的方程为,满足题意;当截距不为0时,设直线的方程为,把点代入直线方程可得,此时直线方程为.故答案为.点睛:求解直线方程时应该注意以下问题:一是根据斜率求倾斜角,要注意倾斜角的范围;二是求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论;三是在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】

(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【题目详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【题目点拨】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答的关键,属于中档题.18、(1),(2)时,【解题分析】

(1)设,有题知,得到,再计算矩形的面积,解不等式即可.(2)首先将花坛的面积化简为,再利用基本不等式的性质即可求出面积的最小值.【题目详解】(1)设,.因为四边形为矩形,所以.即:,解得:.所以,.所以,,解得或.因为,所以或.所以的长度范围是.(2)因为.当且仅当,即时取“”.所以当时,.【题目点拨】本题第一问考查了函数模型,第二问考查了基本不等式,属于中档题.19、(1)见证明;(2)二面角图见解析;【解题分析】

(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【题目详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【题目点拨】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.20、(1)y=c⋅dx【解题分析】

(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【题目详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【题目点拨】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论