![2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M01/33/0D/wKhkGWWkD1OAEy0RAAG29utJpik443.jpg)
![2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M01/33/0D/wKhkGWWkD1OAEy0RAAG29utJpik4432.jpg)
![2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M01/33/0D/wKhkGWWkD1OAEy0RAAG29utJpik4433.jpg)
![2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M01/33/0D/wKhkGWWkD1OAEy0RAAG29utJpik4434.jpg)
![2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M01/33/0D/wKhkGWWkD1OAEy0RAAG29utJpik4435.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省淮安市清江中学等四校数学高一第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.72.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.3.已知数列的前n项和为,且满足,则()A.1 B. C. D.20164.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数5.已知为角终边上一点,且,则()A. B. C. D.6.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.7.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则8.已知直线,,若,则的值为()A.或 B. C. D.9.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy10.已知直线:,:,:,若且,则的值为A. B.10 C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,,则________.12.若角的终边经过点,则______.13.数列满足:,,则______.14.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.15.若点,是圆C:上不同的两点,且,则的值为______.16.设数列的前n项和为,关于数列,有下列三个命题:(1)若既是等差数列又是等比数列,则;(2)若,则是等差数列:(3)若,则是等比数列这些命题中,真命题的序号是__________________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.18.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.19.已知的三个顶点,,,其外接圆为圆.(1)求圆的方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程;(3)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,,使得点是线段的中点,求圆的半径的取值范围.20.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(21.已知直线和.(1)若与互相垂直,求实数的值;(2)若与互相平行,求与与间的距离,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意,焦点坐标,所以,解得,故选A。2、C【解题分析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【题目详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【题目点拨】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.3、C【解题分析】
利用和关系得到数列通项公式,代入数据得到答案.【题目详解】已知数列的前n项和为,且满足,相减:取答案选C【题目点拨】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.4、A【解题分析】
判断函数函数,的奇偶性,求出其周期即可得到结论.【题目详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【题目点拨】本题考查正弦函数的奇偶性和周期性,属基础题.5、B【解题分析】
由可得,借助三角函数定义可得m值与.【题目详解】∵∴,解得又为角终边上一点,∴,∴∴故选B【题目点拨】本题主要考查任意角的三角函数的定义,两角和正切公式,属于基础题.6、B【解题分析】
由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【题目详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【题目点拨】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。7、B【解题分析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.8、B【解题分析】
由两直线平行的等价条件列等式求出实数的值.【题目详解】,则,整理得,解得,故选:B.【题目点拨】本题考查利用两直线平行求参数的值,解题时要利用直线平行的等价条件列等式求解,一般是转化为斜率相等来求解,考查运算求解能力,属于基础题.9、D【解题分析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.10、C【解题分析】
由且,列出方程,求得,,解得的值,即可求解.【题目详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选C.【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据已知角的范围分别求出,,利用整体代换即可求解.【题目详解】,,,所以,,,,所以,=故答案为:【题目点拨】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.12、【解题分析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【题目详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【题目点拨】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.13、【解题分析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【题目详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【题目点拨】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题14、【解题分析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.15、【解题分析】
由,再结合坐标运算即可得解.【题目详解】解:因为点,是圆C:上不同的两点,则,,又所以,即,故答案为:.【题目点拨】本题考查了向量模的运算,重点考查了运算能力,属基础题.16、(1)、(2)、(3)【解题分析】
利用等差数列和等比数列的定义,以及等差数列和等比数列的前项和形式,逐一判断即可.【题目详解】既是等差数列又是等比数列的数列是非零常数列,故(1)正确.等差数列的前项和是二次函数形式,且不含常数,故(2)正确.等比数列的前项和是常数加上常数乘以的形式,故(3)正确.故答案为:(1),(2),(3)【题目点拨】本题主要考查等差数列和等比数列的定义,同时考查了等差数列和等比数列的前项和,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】
(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【题目详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【题目点拨】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.18、(Ⅰ)(Ⅱ)【解题分析】
(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古典概型公式得到事件发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为,.构成事件的区域为,,.根据几何概型公式得到结果.【题目详解】解:设事件为“方程有实数根”.当时,方程有实数根的充要条件为.(Ⅰ)基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(Ⅱ)实验的全部结果所构成的区域为.构成事件的区域为,所求的概率为【题目点拨】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.19、(1)(2)或(3)【解题分析】
试题分析:(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.试题解析:(1)的面积为2;(2)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径,圆的方程为,设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.当直线垂直于轴时,显然符合题意,即为所求;当直线不垂直于轴时,设直线方程为,则,解得,综上,直线的方程为或.(3)直线的方程为,设,,因为点是线段的中点,所以,又,都在半径为的圆上,所以因为关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,又,所以对成立.而在上的值域为,所以且.又线段与圆无公共点,所以对成立,即.故圆的半径的取值范围为.考点:直线与圆的位置关系等有关知识的综合运用.20、(1)an=4n-3【解题分析】
(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【题目详解】(1)设等差数列an的公差为d(d≠0)a1解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共部位装修施工合同范本
- 社区护理文书的标准化编写流程
- 生物医药技术对商业决策的影响分析
- 美妆行业合作协议书(2篇)
- 低压电线路改造施工合同范本
- 标准借款合同模板(民间借贷)正式版
- 购房合同保密协议
- 山东省青岛市即墨区2024-2025学年高二上学期11月期中考试生物试题(解析版)
- 电子与智能化工程项目团队的配置要点
- 电源行业供应链中的风险管理及控制
- 约束带的健康宣教课件
- EAM资产管理的人工智能与大数据应用
- 橙子信用查询报告
- 宜黄县二都镇高山饰面用花岗岩开采以及深加工项目环评报告
- 高一数学必修1课件组合
- 血液科护士的恶性肿瘤护理
- 全国创新杯计算机类说课大赛一等奖作品《神奇的Vloup函数》说课课件
- 《餐饮渠道开发方案》课件
- 小学人教版五年级上册数学填空达标练习50题
- 北京市西城区2023-2024学年五年级上学期期末数学试卷
- 附属医院神经内科中长期发展规划五年发展规划
评论
0/150
提交评论