2024届湖南省浏阳市高一数学第二学期期末质量检测试题含解析_第1页
2024届湖南省浏阳市高一数学第二学期期末质量检测试题含解析_第2页
2024届湖南省浏阳市高一数学第二学期期末质量检测试题含解析_第3页
2024届湖南省浏阳市高一数学第二学期期末质量检测试题含解析_第4页
2024届湖南省浏阳市高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省浏阳市高一数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在中,,点在边上,且,则等于()A. B. C. D.2.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元3.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.104.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2 B.4 C.6 D.85.已知m个数的平均数为a,n个数的平均数为b,则这个数的平均数为()A. B. C. D.6.如果a<b<0,那么下列不等式成立的是()A. B. C. D.7.若,,则()A. B. C. D.8.在△ABC中,a=3,b=3,A=,则C为()A. B. C. D.9.化为弧度是A. B. C. D.10.圆周运动是一种常见的周期性变化现象,可表述为:质点在以某点为圆心半径为r的圆周上的运动叫“圆周运动”,如图所示,圆O上的点以点A为起点沿逆时针方向旋转到点P,若连接OA、OP,形成一个角,当角,则()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题:①函数的最小正周期是;②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;④函数在上是增函数.其中,正确的命题是________(填正确命题的序号).12.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.13.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.14.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.15.已知,且关于的方程有实数根,则与的夹角的取值范围是______.16.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一.游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45°的方向上,然后向正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度.18.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.19.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.20.在平面直角坐标系xOy中,已知点P是直线与直线的交点.(1)求点P的坐标;(2)若直线l过点P,且与直线垂直,求直线l的方程.21.已知函数的定义域为A,的定义域为B.(1)若,求的取值范围;(2)若,求实数的值及实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【题目详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【题目点拨】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.2、B【解题分析】∵,∵数据的样本中心点在线性回归直线上,

回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,

∴广告费用为6万元时销售额为9.4×6+9.1=65.5,

故选B.3、C【解题分析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.4、A【解题分析】

根据平均数相同求出x的值,再根据方差的定义计算即可.【题目详解】根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均数为=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故选A.【题目点拨】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.5、D【解题分析】

根据平均数的定义求解.【题目详解】两组数的总数为:则这个数的平均数为:故选:D【题目点拨】本题主要考查了平均数的定义,还考查了运算求解能力,属于基础题.6、D【解题分析】对于选项A,因为,所以,所以即,所以选项A错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,故选项C错误;对于选项D,,所以,又,所以,所以,选D.7、D【解题分析】

利用集合的补集的定义求出的补集;利用子集的定义判断出.【题目详解】解:,,,,故选:.【题目点拨】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.8、C【解题分析】

由正弦定理先求出的值,然后求出结果【题目详解】在中,,则故选【题目点拨】本题运用正弦定理解三角形,熟练运用公式即可求出结果,较为简单。9、D【解题分析】

由于,则.【题目详解】因为,所以,故选D.【题目点拨】本题考查角度制与弧度制的互化.10、A【解题分析】

运用求任意角的三角函数值的步骤:化正、脱周、变锐角和求值,可得所求值.【题目详解】.故选:A.【题目点拨】本题考查任意角三角函数值的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解题分析】

由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.【题目详解】函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;在直角坐标系xOy中,点P(a,b),将向量绕点O逆时针旋转90°得到向量,设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.故答案为①②④.【题目点拨】本题考查余弦函数的图象和性质,主要是周期性和单调性,考查数形结合思想和化简运算能力,属于基础题.12、【解题分析】

由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【题目详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【题目点拨】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.13、【解题分析】

根据题意到,联立方程得到,得到答案.【题目详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【题目点拨】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.14、【解题分析】

根据题意,可令,结合,再进行整体代换即可求解【题目详解】令,则,,,则,,,则函数值域为故答案为:【题目点拨】本题考查3倍角公式的使用,函数的转化思想,属于中档题15、【解题分析】

先由得出,再根据即可求出与的夹角的取值范围.【题目详解】因为关于的方程有实数根,所以,即,设与的夹角为,所以,因为,所以,即与的夹角的取值范围是【题目点拨】本题主要考查平面向量的夹角公式的应用等,属基础题.16、【解题分析】

已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【题目详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【题目点拨】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】

根据正弦定理求得,然后在直角三角形中求得,即可得到答案.【题目详解】由题意,在中,,故又,故由正弦定理得:,解得,因为,所以,所以.【题目点拨】本题主要考查了解三角形的实际应用问题,其中解答中熟练应用正弦定理和直角三角形的性质是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)分别抽取人,人,人;(2)【解题分析】

(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【题目详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【题目点拨】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.19、(1);(2)存在.【解题分析】

(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【题目详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【题目点拨】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20、(1);(2)【解题分析】

(1)由两条直线组成方程组,求得交点坐标;(2)设与直线垂直的直线方程为,代入点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论