辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题含解析_第1页
辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题含解析_第2页
辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题含解析_第3页
辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题含解析_第4页
辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省阜新市阜蒙县育才高级中学2024届数学高一下期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为()A.48 B.64 C.120 D.802.已知为等差数列,,,则等于().A. B. C. D.3.已知,,则的最大值为()A.9 B.3 C.1 D.274.平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A. B. C. D.5.已知a=log0.92019,b=A.a<c<b B.a<b<c C.b<a<c D.b<c<a6.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形7.已知一几何体的三视图,则它的体积为()A. B. C. D.8.已知数列的前项和为,且,,则()A.200 B.210 C.400 D.4109.若直线与直线互相平行,则的值为()A.4 B. C.5 D.10.定义运算,设,若,,,则的值域为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若锐角满足则______.12.已知点在直线上,则的最小值为__________.13.已知向量,向量,若与垂直,则__________.14.在中,分别是角的对边,,且的周长为5,面积,则=______15.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.16.已知数列满足,,则_______;_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.18.解关于的方程:19.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]20.设集合,,求.21.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

先还原几何体,再根据锥体侧面积公式求结果.【题目详解】几何体为一个正四棱锥,底面为边长为8的正方体,侧面为等腰三角形,底边上的高为5,因此四棱锥的侧面积为,选D.【题目点拨】解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2、B【解题分析】

利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出.【题目详解】解:为等差数列,,,,,,,,,.故选:【题目点拨】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.3、B【解题分析】

由已知,可利用柯西不等式,构造柯西不等式,即可求解.【题目详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【题目点拨】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、C【解题分析】

设点坐标,代入,得到即,再根据,即可求解.【题目详解】设点坐标,因为点的坐标分别为,将各点坐标代入,可得,即,解得,代入,化简得,故选C.【题目点拨】本题主要考查了平面向量的坐标运算和点的轨迹的求解,其中解答中熟记向量的坐标运算,以及平面向量的基本定理是解答的关键,着重考查了推理运算能力,属于基础题.5、A【解题分析】

根据指数函数的单调性以及对数函数的单调性分别判断出a,b,c的取值范围,从而可得结果.【题目详解】由对数函数的性质可得a=log由指数函数的性质可得b=20190.9>所以a<c<b,故选A.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间-∞,0,6、C【解题分析】

由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【题目详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【题目点拨】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.7、C【解题分析】所求体积,故选C.8、B【解题分析】

首先利用递推关系式求出数列的通项公式,进一步利用等差数列的前项和公式的应用求出结果.【题目详解】由题,,又因为所以当时,可解的当时,,与相减得当为奇数时,数列是以为首相,为公差的等差数列,当为偶数时,数列是以为首相,为公差的等差数列,所以当为正整数时,,则故选B.【题目点拨】本题考查的知识点有数列通项公式的求法及应用,等差数列的前项和公式的应用,主要考查学生的运算能力和转化能力,属于一般题.9、C【解题分析】

根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【题目详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【题目点拨】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.10、C【解题分析】

由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【题目详解】、为锐角,,,,,,.故答案为:.【题目点拨】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.12、5【解题分析】

由题得表示点到点的距离,再利用点到直线的距离求解.【题目详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【题目点拨】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.13、;【解题分析】

由计算可得.【题目详解】,∵与垂直,∴,.故答案为-1.【题目点拨】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.14、【解题分析】

令正弦定理化简已知等式,得到,代入题设,求得的长,利用三角形的面积公式表示出的面积,代入已知等式,再将,即可求解.【题目详解】在中,因为,由正弦定理,可得,因为的周长为5,即,所以,又因为,即,所以.【题目点拨】本题主要考查了正弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.15、10【解题分析】

由题意可得,只需计算所有可能取值的个数即可.【题目详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【题目点拨】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.16、【解题分析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【题目详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【题目点拨】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、函数在区间上的最大值为2,最小值为-1【解题分析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式18、【解题分析】

根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【题目详解】由,得,所以或,所以或,所以的解集为:.【题目点拨】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.19、(1)递减区间为[-2,0)和(0,2【解题分析】

(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【题目详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴    ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴   ∵g(x)=2cos∴  t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因为h(x)=-x2-mx+1①当-m2≤1只需满足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②当1<-m2<2因为h(1)=-m>2,与h(s)⊆[-1,2]矛盾,故舍去.③当-m2≥2h(1)=-m≥4与h(s)⊆[-1,2]矛盾,故舍去.综上,m∈[-2,-1].【题目点拨】本题主要考查了函数的单调性,以及含参数二次函数值域的求法,涉及存在性问题,转化思想和分类讨论思想要求较高,属于难题.20、【解题分析】

首先求出集合,,再根据集合的运算求出即可.【题目详解】因为的解为(舍去),所以,又因为的解为,所以,所以.【题目点拨】本题考查了集合的运算,对数与指数的运算,属于基础题.21、(1);(2)【解题分析】

(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【题目详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论