2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题含解析_第1页
2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题含解析_第2页
2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题含解析_第3页
2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题含解析_第4页
2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省鹤岗一中数学高一下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称2.若关于的不等式在区间上有解,则的取值范围是()A. B. C. D.3.已知中,,,若,则的坐标为()A. B. C. D.4.平面直角坐标系xOy中,角的顶点在原点,始边在x轴非负半轴,终边与单位圆交于点,将其终边绕O点逆时针旋转后与单位园交于点B,则B的横坐标为()A. B. C. D.5.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.206.已知,下列不等式中必成立的一个是()A. B. C. D.7.若,则的最小值是()A. B. C. D.8.为了得到函数,(x∈R)的图象,只需将(x∈R)的图象上所有的点().A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位9.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.10.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.12.若满足约束条件,则的最小值为_________.13.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.14.若,方程的解为______.15.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.16.不等式的解集为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求;(2)求函数在区间上的值域.18.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.19.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.20.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.21.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【题目详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【题目点拨】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.2、A【解题分析】

利用分离常数法得出不等式在上成立,根据函数在上的单调性,求出的取值范围【题目详解】关于的不等式在区间上有解在上有解即在上成立,设函数数,恒成立在上是单调减函数且的值域为要在上有解,则即的取值范围是故选【题目点拨】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.3、A【解题分析】

根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【题目详解】因为,所以因为,即M为BC中点所以所以所以选A【题目点拨】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.4、B【解题分析】

,B的横坐标为,计算得到答案.【题目详解】有题意知:B的横坐标为:故答案选B【题目点拨】本题考查了三角函数的计算,意在考查学生的计算能力.5、B【解题分析】

根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【题目详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【题目点拨】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、B【解题分析】

根据不等式的性质,对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,由于,不等号方向不相同,不能相加,故A选项错误.对于B选项,由于,所以,而,根据不等式的性质有:,故B选项正确.对于C选项,,而两个数的正负无法确定,故无法判断的大小关系,故C选项错误.对于D选项,,而两个数的正负无法确定,故无法判断的大小关系,故D选项错误.故选:B.【题目点拨】本小题主要考查根据不等式的性质判断不等式是否成立,属于基础题.7、A【解题分析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8、D【解题分析】

根据函数的平移原则,即可得出结果.【题目详解】因为,,所以为了得到函数的图象,只需将的图象上所有的点向左平移个单位.故选D【题目点拨】本题主要考查三角函数的平移,熟记左加右减的原则即可,属于基础题型.9、A【解题分析】

计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【题目详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【题目点拨】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.10、D【解题分析】

由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【题目详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【题目点拨】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.12、3【解题分析】

在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【题目详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【题目点拨】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.13、5【解题分析】

试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质14、【解题分析】

运用指数方程的解法,结合指数函数的值域,可得所求解.【题目详解】由,即,因,解得,即.故答案:.【题目点拨】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.15、【解题分析】

根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【题目详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【题目点拨】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.16、【解题分析】.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)把直接带入,或者先化简(2)化简得,,根据求出的范围即可解决.【题目详解】(1)因为,,所以;(2)当时,,所以,所以.【题目点拨】本题主要考查了三角函数的问题,对于三角函数需要记住常考的一些性质:图像、周期、最值、单调性、对称轴等.属于中等题.18、(1);(2).【解题分析】

(1)设等差数列的公差为,由题意知,的最小值为,可得出,可得出的取值范围,结合,可求出的值,再利用等差数列的通项公式可求出;(2)将数列的通项公式表示为分段形式,即,于是得出可得出的表达式.【题目详解】(1)设等差数列的公差为,则,由题意知,的最小值为,则,,所以,解得,,,因此,;(2).当时,,则,;当时,,则,.综上所述:.【题目点拨】本题考查等差数列通项公式以及绝对值分段求和,解题的关键在于将的最小值转化为与项相关的不等式组进行求解,考查化归与转化数学思想,属于中等题.19、(Ⅰ)或(Ⅱ)【解题分析】

(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【题目详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【题目点拨】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2).【解题分析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论