四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题含解析_第1页
四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题含解析_第2页
四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题含解析_第3页
四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题含解析_第4页
四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省邻水实验学校2024届高一数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.2.已知,则的值等于()A.2 B. C. D.3.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.4.过点P(﹣2,m)和Q(m,4)的直线斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或45.若是第四象限角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.已知为的一个内角,向量.若,则角()A. B. C. D.7.已知不等式的解集是,则()A. B.1 C. D.38.在中,内角,,的对边分别为,,,且=.则A. B. C. D.9.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.10.若,则的最小值为()A. B. C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列:,,,,,,,,,,,,,,,,,则__________.12.已知,,则________13.若直线:与直线的交点位于第一象限,则直线的倾斜角的取值范围是___________.14.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;15.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.16.已知函数,若函数恰有个零点,则实数的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.18.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.19.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.20.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.21.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】角α终边上一点P(-2,3),所以cos(2、D【解题分析】

根据分段函数的定义域以及函数解析式的关系,代值即可.【题目详解】故选:D【题目点拨】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.3、C【解题分析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,

又三点共线,故得.

故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.4、C【解题分析】试题分析:利用直线的斜率公式求解.解:∵过点P(﹣2,m)和Q(m,4)的直线斜率等于1,∴k==1,解得m=1.故选C.考点:直线的斜率.5、C【解题分析】

利用象限角的表示即可求解.【题目详解】由是第四象限角,则,所以,所以是第三象限角.故选:C【题目点拨】本题考查了象限角的表示,属于基础题.6、C【解题分析】

带入计算即可.【题目详解】即,选C.【题目点拨】本题考查向量向量垂直的坐标运算,属于基础题.7、A【解题分析】

的两个解为-1和2.【题目详解】【题目点拨】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。8、C【解题分析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.9、A【解题分析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【题目详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【题目点拨】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.10、A【解题分析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【题目详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【题目点拨】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【题目详解】当时,;当时,的分母为:又的分子为:本题正确结果:【题目点拨】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.12、【解题分析】

直接利用反三角函数求解角的大小,即可得到答案.【题目详解】因为,,根据反三角函数的性质,可得.故答案为:.【题目点拨】本题主要考查了三角方程的解法,以及反三角函数的应用,属于基础题.13、【解题分析】若直线与直线的交点位于第一象限,如图所示:则两直线的交点应在线段上(不包含点),当交点为时,直线的倾斜角为,当交点为时,斜率,直线的倾斜角为∴直线的倾斜角的取值范围是.故答案为14、【解题分析】

根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【题目详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【题目点拨】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.15、【解题分析】

在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【题目详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【题目点拨】本题考查了向量的夹角、模的运算,属于中档题.16、【解题分析】

首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【题目详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【题目点拨】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【题目详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧面均为等腰直角三角形.又,所以,又,.(2)因为侧棱SB,SA,SC互相垂直,平面SAB,所以平面SAB,.【题目点拨】本题主要考查线面位置关系的证明,考查面积和体积的计算,意在考查学生对这些知识的理解掌握水平.18、(1);(2);(3).【解题分析】

(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3)利用垂径公式,明确是的中点,进而得到以线段为直径的圆的方程.【题目详解】()圆的方程可化为,圆心为,半径为.当直线过圆心,时,,∴直线的方程为,即.()因为直线的倾斜角为且过,所以直线的方程为,即.圆心到直线的距离,∴弦.()由于,而弦心距,∴,∴是的中点.故以线段为直径的圆圆心是,半径为.故以线段为直径的圆的方程为.19、(1)an=2×【解题分析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考点:等差数列与等比数列.20、(1);(2)【解题分析】

(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【题目详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,即,所以,.所以代入韦达定理有,化简得.故,恒过定点.即.【题目点拨】本题主要考查了轨迹方程的求解方法以及联立直线与圆的方程,利用韦达定理代入题中所给的关系式,化简求直线中参数的关系求得定点的问题.属于难题.21、(1);(2).【解题分析】

(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论