版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届博雅闻道高一数学第二学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.42.为研究需要,统计了两个变量x,y的数据·情况如下表:其中数据x1、x2、x3…xn,和数据y1、y2、y3,…yn的平均数分别为和,并且计算相关系数r=-1.8,回归方程为,有如下几个结论:①点(,)必在回归直线上,即=b+;②变量x,y的相关性强;③当x=x1,则必有;④b<1.其中正确的结论个数为A.1 B.2 C.3 D.43.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.4.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.5.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、166.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.7.已知点,和向量,若,则实数的值为()A. B. C. D.8.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.109.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.10.在中,若为等边三角形(两点在两侧),则当四边形的面积最大时,()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知当时,函数(且)取得最大值,则时,的值为__________.12.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.13.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______14.如图,圆锥型容器内盛有水,水深,水面直径放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________15.已知,,两圆和只有一条公切线,则的最小值为________16.数列满足:(且为常数),,当时,则数列的前项的和为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.18.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.19.某商品监督部门对某厂家生产的产品进行抽查检测估分,监督部门在所有产品中随机抽取了部分产品检测评分,得到如图所示的分数频率分布直方图:(1)根据频率分布直方图,估计该厂家产品检测评分的平均值;(2)该厂决定从评分值超过90的产品中取出5件产品,选择2件参加优质产品评选,若已知5件产品中有3件来自车间,有2件产品来自车间,试求这2件产品中含车间产品的概率.20.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.21.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【题目详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【题目点拨】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.2、C【解题分析】
根据回归方程的性质和相关系数的性质求解.【题目详解】回归直线经过样本中心点,故①正确;变量的相关系数的绝对值越接近与1,则两个变量的相关性越强,故②正确;根据回归方程的性质,当时,不一定有,故③错误;由相关系数知负相关,所以,故④正确;故选C.【题目点拨】本题考查回归直线和相关系数,注意根据回归方程得出的是估计值不是准确值.3、C【解题分析】
计算结果.【题目详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【题目点拨】本题考查了棱柱的体积公式,属于简单题型.4、D【解题分析】
根据函数的图象,得出振幅与周期,从而求出与的值.【题目详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【题目点拨】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.5、B【解题分析】试题分析:高级职称应抽取;中级职称应抽取;一般职员应抽取.考点:分层抽样点评:本题主要考查分层抽样的定义与步骤.分层抽样:当总体是由差异明显的几个部分组成的,可将总体按差异分成几个部分(层),再按各部分在总体中所占比例进行抽样.6、D【解题分析】
画出图象及直线,借助图象分析.【题目详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【题目点拨】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.7、B【解题分析】
先求出,再利用共线向量的坐标表示求实数的值.【题目详解】由题得,因为,所以.故选:B【题目点拨】本题主要考查向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、A【解题分析】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以.9、D【解题分析】
在三角形中,利用正弦定理求得,然后在三角形中求得.【题目详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【题目点拨】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.10、A【解题分析】
求出三角形的面积,求出四边形的面积,运用三角函数的恒等变换和正弦函数的值域,求出满足条件的角的值即可.【题目详解】设,,,是正三角形,,由余弦定理得:,,时,四边形的面积最大,此时.故选A.【题目点拨】本题考查余弦定理和三角形的面积公式,考查两角的和差公式和正弦函数的值域,考查化简运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】
先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【题目详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【题目点拨】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.12、【解题分析】
根据数据表求解出,代入回归直线,求得的值.【题目详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【题目点拨】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.13、①④⑤【解题分析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l(即AC1)的垂面.对比图①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.14、【解题分析】
通过将图形转化为平面图形,然后利用放球前后体积等量关系求得球的体积.【题目详解】作出相关图形,显然,因此,因此放球前,球O与边相切于点M,故,则,所以,,所以放球后,而,而,解得.【题目点拨】本题主要考查圆锥体积与球体积的相关计算,建立体积等量关系是解决本题的关键,意在考查学生的划归能力,计算能力和分析能力.15、9【解题分析】
两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【题目详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【题目点拨】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.16、【解题分析】
直接利用分组法和分类讨论思想求出数列的和.【题目详解】数列满足:(且为常数),,当时,则,所以(常数),故,所以数列的前项为首项为,公差为的等差数列.从项开始,由于,所以奇数项为、偶数项为,所以,故答案为:【题目点拨】本题考查了由递推关系式求数列的性质、等差数列的前项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.18、证明见解析【解题分析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【题目详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC内的两相交线,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC内两相交线,所以AD⊥面SBC.【题目点拨】本题考查了线面垂直的证明与性质,属于基础题.19、(1);(2).【解题分析】
(1)利用平均数=每个小矩形面积小矩形底边中点横坐标之和,即可求解.(2)设这5件产品分别为,其中1,2为车间生产的产品,利用列举法求出基本事件的个数,再利用古典概型的概率公式即可求解.【题目详解】解:(1)依题意,该厂产品检测的平均值.(2)设这5件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准砂石购销合同文本
- 粮油采购及供应协议
- 购销摄像机合同
- 饲料添加剂采购合同的合同风险防范
- 车库出租合同书范例
- 云服务迁移合同
- 项目服务合同的法律责任认定
- 煤矿安全文明生产与质量标准化
- 自驾车服务畅行无阻
- 家居采购合同的签订要点
- 全国第三届职业技能大赛(数字孪生应用技术)选拔赛理论考试题库(含答案)
- 应用数理统计知到智慧树章节测试课后答案2024年秋中国农业大学
- 大国三农II-农业科技版智慧树知到期末考试答案章节答案2024年中国农业大学
- JBT 1472-2023 泵用机械密封 (正式版)
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- 部编本小学五年级上册语文期末考试(选择题)专项训练题及答案
- 读《让儿童在问题中学数学》有感范文三篇
- 陈述句改成双重否定句(课堂PPT)
- 人教版六年级数学上册总复习教案
- 自闭症儿童行为检核表学前版
评论
0/150
提交评论