2024届重庆市南川中学高一数学第二学期期末考试模拟试题含解析_第1页
2024届重庆市南川中学高一数学第二学期期末考试模拟试题含解析_第2页
2024届重庆市南川中学高一数学第二学期期末考试模拟试题含解析_第3页
2024届重庆市南川中学高一数学第二学期期末考试模拟试题含解析_第4页
2024届重庆市南川中学高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市南川中学高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知都是正数,且,则的最小值等于A. B.C. D.2.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.3.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,4.中,,,,则的面积等于()A. B. C.或 D.或5.某三棱锥的三视图如图所示,该三棱锥的外接球表面积为()A. B. C. D.6.已知向量,,,且,则实数的值为A. B. C. D.7.已知函数,则()A. B. C. D.8.化简sin2013o的结果是A.sin33o B.cos33o C.-sin33o D.-cos33o9.若{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9=()A.39 B.20 C.19.5 D.3310.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.若,其中是第二象限角,则____.12.若函数,的最大值为,则的值是________.13.在中,,,点为延长线上一点,,连接,则=______.14.中,内角,,所对的边分别是,,,且,,则的值为__________.15.在中角所对的边分别为,若则___________16.的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面积S=,且b>c,求b,c.18.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.19.某企业生产的某种产品,生产总成本(元)与产量(吨)()函数关系为,且函数是上的连续函数(1)求的值;(2)当产量为多少吨时,平均生产成本最低?20.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.21.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

,故选C.2、D【解题分析】

求出正四棱锥的高后可求其体积.【题目详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.3、D【解题分析】

根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【题目详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【题目点拨】本题考查数学归纳法的应用,属于基础题.4、D【解题分析】

先根据余弦定理求AC,再根据面积公式得结果.【题目详解】因为,所以或2,因此的面积等于或等于,选D.【题目点拨】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.5、D【解题分析】

根据三视图还原几何体,由三棱锥的几何特征即可求出其外接球表面积.【题目详解】根据三视图可知,该几何体如图所示:所以该几何体的外接球,即是长方体的外接球.因为,所以外接球直径.故该三棱锥的外接球表面积为.故选:D.【题目点拨】本题主要考查由三视图还原几何体,并计算其外接球的表面积,意在考查学生的直观想象能力和数学运算能力,属于基础题.6、A【解题分析】

求出的坐标,由得,得到关于的方程.【题目详解】,,因为,所以,故选A.【题目点拨】本题考查向量减法和数量积的坐标运算,考查运算求解能力.7、A【解题分析】

由题意结合函数的解析式分别求得的值,然后求解两者之差即可.【题目详解】由题意可得:,,则.故选:A.【题目点拨】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.8、C【解题分析】试题分析:sin2013o=.考点:诱导公式.点评:直接考查诱导公式,我们要熟记公式.属于基础题型.9、D【解题分析】

根据等差数列的通项公式,纵向观察三个式子的项的脚标关系,可巧解.【题目详解】由等差数列得:所以同理:故选D.【题目点拨】本题考查等差数列通项公式,关键纵向观察出脚标的特殊关系更妙,属于中档题.10、A【解题分析】

分别判断两个函数的定义域和对应法则是否相同即可.【题目详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【题目点拨】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【题目详解】解:,又是第二象限角故,故答案为.【题目点拨】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.12、【解题分析】

利用两角差的正弦公式化简函数的解析式为,由的范围可得的范围,根据最大值可得的值.【题目详解】∵函数=2()=,∵,∴∈[,],又∵的最大值为,所以的最大值为,即=,解得.故答案为【题目点拨】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题.13、.【解题分析】

由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【题目详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【题目点拨】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.14、4【解题分析】

利用余弦定理变形可得,从而求得结果.【题目详解】由余弦定理得:本题正确结果:【题目点拨】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.15、【解题分析】,;由正弦定理,得,解得.考点:正弦定理.16、【解题分析】

由反余弦可知,由此可计算出的值.【题目详解】.故答案为:.【题目点拨】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)根据已知条件及余弦定理可求得的值,再由同角三角函数基本关系式可求得的值.因为,所以,由两角和的正弦公式可将其化简变形,可求得与的关系式,从而可得.(2)根据余弦定理和三角形面积均可得的关系式.从而可解得的值.试题解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴联立①②可得.考点:1正弦定理;2余弦定理;3两角和差公式.18、(1);(2).【解题分析】

(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【题目详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【题目点拨】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.19、(1);(2)当产量吨,平均生产成本最低.【解题分析】

(1)根据函数连续性的定义,可得在分段处两边的函数值相等,可得a的值;(2)求出平均成本的表达式,结合二次函数和基本不等式,可得平均生产成本的最小值点.【题目详解】(1)设,由函数是上的连续函数.即,代入得(2)设平均生产成本为,则当中,,函数连续且在单调递减,单调递增即当,元当,,由,当且仅当取等号,即当,元综上所述,当产量吨,平均生产成本最低.【题目点拨】本题考查的知识点是分段函数的应用,二次函数的图象和性质,基本不等式求最值,属于中档题.20、,【解题分析】

由图形知旋转后的几何体是一个圆台,从上面挖去一个半球后剩余部分,根据图形中的数据可求出其表面积和体积.【题目详解】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面,而半球面的表面积,圆台的底面积,圆台的侧面积,所以所求几何体的表面积;圆台的体积,半球的体积,所以,旋转体的体积为,故得解.【题目点拨】本题考查组合体的表面积、体积,还考查了空间想象能力,能想象出旋转后的旋转体的构成是本题的关键,属于中档题.21、(I);(II)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论