版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市福田区耀华实验学校国际班数学高一下期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,,则等于()A.2 B.18 C.4 D.92.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.3.已知是第二象限角,且,则的值为A. B. C. D.4.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢+矢).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积为()A. B. C. D.5.若正项数列的前项和为,满足,则()A. B. C. D.6.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.07.已知,,则在方向上的投影为()A. B. C. D.8.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD9.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.10.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,是球的球面上的四点,,,两两垂直,,且三棱锥的体积为,则球的表面积为______.12.已知向量,且,则___________.13.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.14.化简:________15.若Sn为等比数列an的前n项的和,8a16.己知数列满足就:,,若,写出所有可能的取值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c18.已知.(1)若三点共线,求实数的值;(2)证明:对任意实数,恒有成立.19.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.20.已知无穷数列,是公差分别为、的等差数列,记(),其中表示不超过的最大整数,即.(1)直接写出数列,的前4项,使得数列的前4项为:2,3,4,5;(2)若,求数列的前项的和;(3)求证:数列为等差数列的必要非充分条件是.21.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用等差数列性质得到,,计算得到答案.【题目详解】等差数列中,故选:D【题目点拨】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.2、D【解题分析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。3、B【解题分析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.4、C【解题分析】
首先根据图形计算出矢,弦,再带入弧田面积公式即可.【题目详解】如图所示:因为,,为等边三角形.所以,矢,弦..故选:C【题目点拨】本题主要考查扇形面积公式,同时考查学生对题意的理解,属于中档题.5、A【解题分析】
利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【题目详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【题目点拨】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。6、C【解题分析】
画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.7、A【解题分析】在方向上的投影为,选A.8、D【解题分析】
在正方体内结合线面关系证明线面垂直,继而得到线线垂直【题目详解】,平面,平面,则平面又因为平面则故选D【题目点拨】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果9、B【解题分析】
通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【题目详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【题目点拨】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.10、B【解题分析】
逐一分析选项,得到答案.【题目详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【题目点拨】本题考查了向量的基本概念,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据三棱锥的体积可求三棱锥的侧棱长,补体后可求三棱锥外接球的直径,从而可计算外接球的表面积.【题目详解】三棱锥的体积为,故,因为,,两两垂直,,故可把三棱锥补成正方体,该正方体的体对角线为三棱锥外接球的直径,又体对角线的长度为,故球的表面积为.填.【题目点拨】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.12、【解题分析】
把平方,将代入,化简即可得结果.【题目详解】因为,所以,,故答案为.【题目点拨】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).13、2【解题分析】
由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【题目详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
根据三角函数的诱导公式,准确运算,即可求解.【题目详解】由题意,可得.故答案为:.【题目点拨】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.15、-7【解题分析】设公比为q,则8a1q=-a116、【解题分析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=5三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(8,62);(2)【解题分析】
(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【题目详解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有两解,∴bsin解得8<b<62,即b的取值范围为((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【题目点拨】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1)-3;(2)证明见解析.【解题分析】分析:(1)由题意可得,结合三点共线的充分必要条件可得.(2)由题意结合平面向量数量积的坐标运算法则可得,则恒有成立.详解:(1),∵三点共线,∴,∴.(2),∴,∴恒有成立.点睛:本题主要考查平面向量数量积的运算法则,二次函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19、(1)见证明;(2);(3)【解题分析】
(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【题目详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.因此,从而为二面角的平面角.在中,,,由此得由(1)知,故在中,因此所以二面角的正弦值为.(3)因为,故过点作的平行线必与线段相交,设交点为,连接,;∴或其补角为异面直线与所成的角;由于,故;在中,,;∴;∴在中,由,,可得:;由余弦定理,可得,,解得:,设;在中,;在中,;∴在中,,∴;;解得;∴.【题目点拨】本题主要考查线线垂直、二面角的平面角、异面直线所成角的.属于中档题.20、(1)的前4项为1,2,3,4,的前4项为1,1,1,1;(2);(3)证明见解析【解题分析】
(1)根据定义,选择,的前4项,尽量选用整数计算方便;(2)分别考虑,的前项的规律,然后根据计算的运算规律计算;(3)根据必要不充分条件的推出情况去证明即可.【题目详解】(1)由的前4项为:2,3,4,5,选、的前项为正整数:的前4项为1,2,3,4,的前4项为1,1,1,1;(2)将的前项列举出:;将的前项列举出:;则;(3)充分性:取,此时,将的前项列举出:,将前项列出:,此时的前项为:,显然不是等差数列,充分性不满足;必要性:设,,当为等差数列时,因为,所以,又因为,所以有:,且,所以;,,不妨令,则有如下不等式:;当时,令,则当时,,此时无解;当时,令,则当时,,此时无解;所以必有:,故:必要性满足;综上:数列为等差数列的必要非充分条件是【题目点拨】本题考查数列的定义以及证明,难度困难.对于充分必要条件的证明,需要对充分性和必要性同时分析,不能取其一分析;新定义的数列问题,可通过定义先理解定义的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直播平台主播薪资规范
- 娱乐场所安防施工合同
- 旅游信息市场管理办法
- 矿山安全设备测试管理办法
- 森林苗圃施工协议
- 建筑工程彩钢瓦施工合同
- 武汉市计划生育管理妇联行业应用
- 湿地保护中石化施工合同
- 畜牧设备租赁合同转让样本
- 城市绿化项目投标承诺:生态优先
- (完整版)新概念英语第一册单词表(打印版)
- 签申工作准假证明中英文模板
- 员工履历表(标准样本)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
- 新能源发电技术 课件 第一章-新能源发电概述
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 浙江省温州市苍南县2023-2024学年八年级上学期期中考试英语试题
- 2024水利云播五大员考试题库及答案
- 2024-2030年中国汽摩配行业运营态势及重点企业发展分析报告
评论
0/150
提交评论