2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题含解析_第1页
2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题含解析_第2页
2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题含解析_第3页
2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题含解析_第4页
2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省昌乐县第一中学高一数学第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则=()A. B. C. D.2.已知是定义在上的奇函数,且满足,当时,,则函数在区间上所有零点之和为()A.4 B.6 C.8 D.123.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等4.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.255.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+26.下列函数中,值域为的是()A. B. C. D.7.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12A.缩小为原来的34 B.缩小为原来的C.扩大为原来的2倍 D.不变8.已知实数满足,则的最大值为()A. B. C. D.9.已知为等比数列的前项和,,,则A. B. C. D.1110.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,以为直径的圆中,,在圆上,,于,于,,记,,的面积和为,则的最大值为______.12.在中,三个角所对的边分别为.若角成等差数列,且边成等比数列,则的形状为_______.13.若角的终边过点,则______.14.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.15.若满足约束条件,的最小值为,则________.16.设满足约束条件若目标函数的最大值为,则的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知三棱柱中,平面ABC,,,M为AC中点.(1)证明:直线平面;(2)求异面直线与所成角的大小.18.对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:分组频数频率2440.120.05合计1(1)求出表中,及图中的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.19.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.20.已知不共线的向量,,,.(1)求与的夹角的余弦值;(2)求.21.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据交集定义直接求解可得结果.【题目详解】根据交集定义知:故选:【题目点拨】本题考查集合运算中的交集运算,属于基础题.2、C【解题分析】

根据函数的奇偶性和对称性,判断出函数的周期,由此画出的图像.由化简得,画出的图像,由与图像的交点以及对称性,求得函数在区间上所有零点之和.【题目详解】由于,故是函数的对称轴,由于为奇函数,故函数是周期为的周期函数,当时,,由此画出的图像如下图所示.令,注意到,故上述方程可化为,画出的图像,由图可知与图像都关于点对称,它们两个函数图像的个交点也关于点对称,所以函数在区间上所有零点之和为.故选:C.【题目点拨】本小题主要考查函数的奇偶性、对称性以及周期性,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.3、C【解题分析】

由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【题目详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【题目点拨】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.4、C【解题分析】

将|a+b5、D【解题分析】

首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【题目详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【题目点拨】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.6、B【解题分析】

依次判断各个函数的值域,从而得到结果.【题目详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【题目点拨】本题考查初等函数的值域问题,属于基础题.7、A【解题分析】

设原来的圆锥底面半径为r,高为h,可得出变化后的圆锥的底面半径为12r,高为【题目详解】设原来的圆锥底面半径为r,高为h,该圆锥的体积为V=1变化后的圆锥底面半径为12r,高为该圆锥的体积为V'=1故选:A.【题目点拨】本题考查圆锥体积的计算,考查变化后的圆锥体积的变化,解题关键就是圆锥体积公式的应用,考查计算能力,属于中等题.8、A【解题分析】

由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【题目详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【题目点拨】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.9、C【解题分析】

由题意易得数列的公比代入求和公式计算可得.【题目详解】设等比数列公比为q,,则,解得,,故选:C.【题目点拨】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.10、A【解题分析】

连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【题目详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【题目点拨】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

可设,表示出S关于的函数,从而转化为三角函数的最大值问题.【题目详解】设,则,,,当时,.【题目点拨】本题主要考查函数的实际运用,三角函数最值问题,意在考查学生的划归能力,分析能力和数学建模能力.12、等边三角形【解题分析】

分析:角成等差数列解得,边成等比数列,则,再根据余弦定理得出的关系式.详解:角成等差数列,则解得,边成等比数列,则,余弦定理可知故为等边三角形.点睛:判断三角形形状,是根据题意推导边角关系的恒等式.13、-2【解题分析】

由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.14、【解题分析】

首先根据三视图还原几何体,再计算体积即可.【题目详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【题目点拨】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.15、4【解题分析】

由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【题目详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【题目点拨】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.16、【解题分析】

试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】

(1)连接交于点O,再证明,得证;(2)先求,可得.再结合即可得解.【题目详解】证明:(1)连接交于点O,连接OM,为平行四边形,为的中点,又M为AC的中点,.又平面,平面.平面.(2)平面ABC,,.又,由M为AC中点,,,又O为的中点,.,.所以异面直线与所成角的大小为.【题目点拨】本题考查了线面平行的判定定理,重点考查了异面直线所成角的求法,属基础题.18、(1);;;(2)60人.(3)【解题分析】

(1)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值;(2)该校高三学生有240人,分组内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人;(3)设在区间内的人为,,,,在区间内的人为,,写出任选2人的所有基本事件,利用对立事件求得答案.【题目详解】(1)由分组内的频数是10,频率是0.25知,,∴.∵频数之和为40,∴,,.∵是对应分组的频率与组距的商,∴;(2)因为该校高三学生有240人,分组内的频率是0.25,∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人.(3)这个样本参加社区服务的次数不少于20次的学生共有人,设在区间内的人为,,,,在区间内的人为,.则任选2人共有,,,,,,,,,,,,,,15种情况,而两人都在内只能是一种,∴所求概率为.【题目点拨】本题以图表为背景,考查从图表中提取信息,同时在统计的基础上,考查古典概型的计算,考查基本数据处理能力.19、(3)甲班参加;(4).【解题分析】

试题分析:(3)由题意知求出x=5,y=4.从而求出乙班学生的平均数为83,分别求出S34和S44,根据甲、乙两班的平均数相等,甲班的方差小,得到应该选派甲班的学生参加决赛.(4)成绩在85分及以上的学生一共有5名,其中甲班有4名,乙班有3名,由此能求出随机抽取4名,至少有3名来自甲班的概率.试题解析:(3)甲班的平均分为,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(4)分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.考点:3.古典概型及其概率计算公式;4.茎叶图.20、(1);(2).【解题分析】

(1)先计算出,再代入公式,求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论